Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 10;1(10):576-582.
doi: 10.1021/prechem.3c00084. eCollection 2023 Dec 25.

Copper-Catalyzed Enantioconvergent Radical C(sp3)-N Cross-Coupling to Access Chiral α-Amino-β-lactams

Affiliations

Copper-Catalyzed Enantioconvergent Radical C(sp3)-N Cross-Coupling to Access Chiral α-Amino-β-lactams

Jing-Jing Zheng et al. Precis Chem. .

Abstract

A copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of racemic tertiary α-bromo-β-lactams with aromatic amines is developed under mild thermal reaction conditions. The use of a sterically demanded oxazoline-derived sulfonamide N,N,N-ligand is crucial for the reaction initiation and effective enantio-discrimination of the azetidinone-derived cyclic alkyl radicals. The strategy provides an attractive approach to access chiral α-amino-β-lactams, an important structural motif in many biologically active molecules. Preliminary mechanistic studies support the formation of azetidinone-derived alkyl radicals from the L*Cu(I)-amido complex and α-bromo-β-lactams.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Enantioconvergent C(sp3)–N Cross-Coupling to Access Chiral α-Amino-β-lactams
Scheme 2
Scheme 2. Mechanistic Investigation

References

    1. Brandi A.; Cicchi S.; Cordero F. M. Novel Syntheses of Azetidines and Azetidinones. Chem. Rev. 2008, 108, 3988–4035. 10.1021/cr800325e. - DOI - PubMed
    2. Pitts C. R.; Lectka T. Chemical Synthesis of β-Lactams: Asymmetric Catalysis and Other Recent Advances. Chem. Rev. 2014, 114, 7930–7953. 10.1021/cr4005549. - DOI - PubMed
    3. Decuyper L.; Jukič M.; Sosič I.; Žula A.; D’hooghe M.; Gobec S. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams. Med. Res. Rev. 2018, 38, 426–503. 10.1002/med.21443. - DOI - PubMed
    4. da Silveira Pinto L. S.; Alves Vasconcelos T. R.; Gomes C. R. B.; de Souza M. V. N. A Brief Review on the Development of Novel Potentially Active Azetidin-2-ones Against Cancer. Curr. Org. Chem. 2020, 24, 473–486. 10.2174/1385272824666200303115444. - DOI
    1. Ojima I.; Delaloge F. Asymmetric Synthesis of Building-Blocks for Peptides and Peptidomimetics by Means of the β-Lactam Synthon Method. Chem. Soc. Rev. 1997, 26, 377–386. 10.1039/CS9972600377. - DOI
    2. Alcaide B.; Almendros P.; Aragoncillo C. β-Lactams: Versatile Building Blocks for the Stereoselective Synthesis of Non-β-Lactam Products. Chem. Rev. 2007, 107, 4437–4492. 10.1021/cr0307300. - DOI - PubMed
    3. Palomo C.; Oiarbide M. β-Lactam Ring Opening: A Useful Entry to Amino Acids and Relevant Nitrogen-Containing Compounds. Top. Heterocycl. Chem. 2010, 22, 211–259. 10.1007/7081_2009_11. - DOI
    1. For selected examples, see:

    2. Hodous B. L.; Fu G. C. Enantioselective Staudinger Synthesis of β-Lactams Catalyzed by a Planar-Chiral Nucleophile. J. Am. Chem. Soc. 2002, 124, 1578–1579. 10.1021/ja012427r. - DOI - PubMed
    3. Lee E. C.; Hodous B. L.; Bergin E.; Shih C.; Fu G. C. Catalytic Asymmetric Staudinger Reactions to Form β-Lactams: An Unanticipated Dependence of Diastereoselectivity on the Choice of the Nitrogen Substituent. J. Am. Chem. Soc. 2005, 127, 11586–11587. 10.1021/ja052058p. - DOI - PubMed
    4. Tong H.-R.; Zheng W.; Lv X.; He G.; Liu P.; Chen G. Asymmetric Synthesis of β-Lactam via Palladium-Catalyzed Enantioselective Intramolecular C(sp3)-H Amidation. ACS Catal. 2020, 10, 114–120. 10.1021/acscatal.9b04768. - DOI
    5. Qi J.; Wei F.; Huang S.; Tung C.-H.; Xu Z. Copper(I)-Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of α-Thiofunctional Chiral β-Lactams. Angew. Chem., Int. Ed. 2021, 60, 4561–4565. 10.1002/anie.202013450. - DOI - PubMed
    6. Qi J.; Wei F.; Tung C.-H.; Xu Z. Modular Synthesis of α-Quaternary Chiral β-Lactams by a Synergistic Copper/Palladium-Catalyzed Multicomponent Reaction. Angew. Chem., Int. Ed. 2021, 60, 13814–13818. 10.1002/anie.202100601. - DOI - PubMed
    7. Zhong F.; Yue W.-J.; Yin X.-H.; Zhang H.-M.; Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of α-Allenylamines and β-Lactams through Regioselective Mannich-Type Reactions. ACS Catal. 2022, 12, 9181–9189. 10.1021/acscatal.2c01399. - DOI
    8. Qi J.; Song T.; Yang Z.; Sun S.; Tung C.-H.; Xu Z. Simultaneous Dual Cu/Ir Catalysis: Stereodivergent Synthesis of Chiral β-Lactams with Adjacent Tertiary/Quaternary/Tertiary Stereocenters. ACS Catal. 2023, 13, 2555–2564. 10.1021/acscatal.2c04926. - DOI
    1. For a recent review, see:

    2. Deketelaere S.; Van Nguyen T.; Stevens C. V.; D’hooghe M. Synthetic Approaches toward Monocyclic 3-Amino-β-Lactams. ChemistryOpen 2017, 6, 301–319. 10.1002/open.201700051. - DOI - PMC - PubMed
    3. For selected examples, see:

    4. Decuyper L.; Magdalenić K.; Verstraete M.; Jukič M.; Sosič I.; Sauvage E.; Amoroso A. M.; Verlaine O.; Joris B.; Gobec S.; D’hooghe M. α-Unsaturated 3-Amino-1-carboxymethyl-β-lactams as Bacterial PBP Inhibitors: Synthesis and Biochemical Assessment. Chem.—Eur. J. 2019, 25, 16128–16140. 10.1002/chem.201904139. - DOI - PubMed
    5. Grabrijan K.; Strašek N.; Gobec S. Synthesis of 3-Amino-4-substituted Monocyclic β-Lactams-Important Structural Motifs in Medicinal Chemistry. Int. J. Mol. Sci. 2022, 23, 360.10.3390/ijms23010360. - DOI - PMC - PubMed
    1. Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236.

LinkOut - more resources