Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan 30;145(5):475-485.
doi: 10.1182/blood.2022017717.

Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management

Affiliations
Review

Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management

Sushree S Sahoo et al. Blood. .

Abstract

Sterile alpha motif domain-containing protein 9 (SAMD9) and SAMD9-like (SAMD9L) are paralogous genes encoding antiviral proteins that negatively regulate cell proliferation. Heterozygous germ line gain-of-function (GoF) SAMD9/9L variants cause multisystem syndromes with variable manifestations. The unifying features are cytopenia, immunodeficiency, infections, bone marrow failure, myelodysplasia, and monosomy 7. Nonhematopoietic presentations can affect almost every organ system. Growth impairment and adrenal insufficiency are typical in SAMD9, whereas progressive neurologic deficits characterize SAMD9L. Most patients (>90%) carry germ line missense GoF variants. A subgroup of patients presenting with SAMD9L-associated inflammatory disease carry frameshift-truncating variants that are also GoF. Somatic genetic rescue occurs in two-third of patients or more and involves monosomy 7, which may spontaneously disappear (transient monosomy 7) or progress to myelodysplastic syndrome (MDS)/leukemia, and adaptive clones with somatic SAMD9/9L compensatory mutations or uniparental disomy 7q (UPD7q), both associated with remission. This manuscript examines the clinical and genetic spectrum, therapies, and outcome based on 243 published patients compiled in our registry, with additional genetic information on 62 unpublished cases. We consolidate the diverse clinical manifestations and diagnostic challenges of SAMD9/9L syndromes to enhance recognition and improve patient care. We highlight the knowledge gaps in pathomechanisms and emphasize the importance of genetic surveillance assessing disease remission vs disease progression. Insights are provided into variant curation and the necessity of testing for somatic SAMD9/9L mutations and UPD7q. Multidisciplinary care in specialized centers is critical to manage these complex disorders. Future natural history studies, especially in patients with monosomy 7, will help formulate evidence-based surveillance protocols and optimize transplant timing and outcomes.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest disclosure: The authors declare no competing financial interests.

References

    1. Asou H, Matsui H, Ozaki Y, et al. Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383(2):245–251. - PubMed
    1. Alicea Marrero MM, Espanol M, Marrero-Rivera G, et al. Successful haploidentical bone marrow transplantation of an infant with a novel mutation in SAMD9L gene (Ataxia-Pancytopenia Syndrome) J Pediatr Hematol Oncol. 2022;44(7):419–420. - PubMed
    1. Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48(7):792–797. - PubMed
    1. Chen DH, Below JE, Shimamura A, et al. Ataxia-Pancytopenia Syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2016;98(6):1146–1158. - PMC - PubMed
    1. Buonocore F, Kuhnen P, Suntharalingham JP, et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J Clin Invest. 2017;127(5):1700–1713. - PMC - PubMed

Publication types

MeSH terms