Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec:376:972-984.
doi: 10.1016/j.jconrel.2024.10.056. Epub 2024 Nov 6.

Surface-engineered mesenchymal stem cell for refractory asthma therapy: Reversing airway remodeling

Affiliations

Surface-engineered mesenchymal stem cell for refractory asthma therapy: Reversing airway remodeling

Xing-Yue He et al. J Control Release. 2024 Dec.

Abstract

In the development of asthma, subepithelial fibrosis and vascular proliferation cause airway remodeling and narrowing, leading to disease deterioration and respiratory failure. In the clinic, the treatment of asthma was aimed at reducing the frequency of acute asthma attacks through inhaled corticosteroids (ICSs). However, ICSs cannot prevent the progression into refractory asthma due to the formation of airway remodeling mainly by subepithelial fibrosis and angiogenesis surrounding the tracheal lumen. Herein, we constructed surface-engineered mesenchymal stem cells (MSCs/PVLA) via the bioconjugation of MSCs and reactive oxygen species-responsive polymeric micelles loaded with vactosertib (VST) and linifanib (LFN) for treating refractory asthma through reversing airway remodeling. MSCs/PVLA migrated to the tracheal lumen due to the inflammation tropism of MSCs, and subsequently released VST and LFN could inhibit the formation of airway remodeling by preventing subepithelial fibrosis and angiogenesis. Meanwhile, MSCs reduced inflammatory cell infiltration and cytokine secretion to regulate the pathological microenvironment. Our results suggested that MSCs/PVLA could serve as a promising candidate to prevent disease exacerbations and treat refractory asthma.

Keywords: Airway remodeling; Angiogenesis; Asthma; Mesenchymal stem cell; Subepithelial fibrosis.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing financial interest.