Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 11;25(11):7349-7360.
doi: 10.1021/acs.biomac.4c01027. Epub 2024 Oct 31.

Enzyme-Mimetic, Cascade Catalysis-Based Triblock Polypeptide-Assembled Micelles for Enhanced Chemodynamic Therapy

Affiliations

Enzyme-Mimetic, Cascade Catalysis-Based Triblock Polypeptide-Assembled Micelles for Enhanced Chemodynamic Therapy

Hanyan Xu et al. Biomacromolecules. .

Abstract

Peptides and their conjugates are appealing as molecular scaffolds for constructing supramolecular biomaterials from the bottom up. Through strategic sequence design and interaction modulation, these peptides can self-assemble into diverse nanostructures that can, in turn, mimic the structural and catalytic functions of contemporary proteins. Here, inspired by the histidine brace active site identified in the metalloenzyme, we developed a triblock polypeptide with a hydrophobic polyleucine segment, a hydrophilic polylysine segment, and a terminal oligohistidine segment. This polypeptide demonstrates tunable and adaptive self-assembly morphologies. Moreover, copper ions can interact with the oligohistidine chelator and mediate the supramolecular assembly, generating metal-ligand centers for redox flow. The triblock polypeptide-based peptide micelles show Fenton-type activity with high substrate affinity when coassembled with copper ions. We have also engineered therapeutic micelles by coassembling two polypeptides, one integrated with copper ions and the other conjugated with glucose oxidase. This coassembled nanoplatform shows high in vitro and in vivo antitumor efficacy through a mechanism that combines triggered starvation and chemodynamic therapy. The versatility of this polypeptide sequence, which is compatible with various metal ions and functional ligands, paves the way for a broad spectrum of therapeutic and diagnostic applications.

PubMed Disclaimer

LinkOut - more resources