Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb;58(2):230-40.
doi: 10.1161/01.res.58.2.230.

The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes

Free article

The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes

M T Knabb et al. Circ Res. 1986 Feb.
Free article

Abstract

To determine whether accumulation of long-chain acyl carnitine contributes to electrophysiological abnormalities induced by hypoxia, we characterized effects of normoxic and hypoxic perfusion on the subcellular distribution of endogenous long-chain acyl carnitine and transmembrane potentials of cultured rat neonatal myocytes. Hypoxia increased long-chain acyl carnitine more than 5-fold. Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (10 microM), a carnitine acyltransferase inhibitor, precluded accumulation of long-chain acyl carnitine induced by hypoxia. Tissue was processed for electron microscopy by a procedure specifically developed for selective extraction of endogenous short-chain and free carnitine but retention of endogenous long-chain acyl carnitine. In normoxic-perfused cells, long-chain acyl carnitine was concentrated in mitochondria and cytoplasmic membranous components. Only small amounts were present in sarcolemma. Hypoxia increased mitochondrial long-chain acyl carnitine by 10-fold and sarcolemmal long-chain acyl carnitine by 70-fold. After 60 minutes of hypoxia, sarcolemma contained 1.4 X 10(7) long-chain acyl carnitine molecules/micron 3 of membrane volume, a value corresponding to approximately 3.5% of total sarcolemmal phospholipid. Hypoxia also significantly decreased maximum diastolic potential, action potential amplitude and maximum upstroke velocity of phase 0. Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate inhibited accumulation of long-chain acyl carnitine in each subcellular compartment and prevented the depression of electrophysiological function induced by hypoxia. These results strongly implicate endogenous long-chain acyl carnitine as a mediator of electrophysiological alterations induced by hypoxia.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources