Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 10:13:1035.
doi: 10.12688/f1000research.154680.2. eCollection 2024.

Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine

Affiliations

Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine

Ali Muhaimil et al. F1000Res. .

Abstract

Background: Low back pain (LBP), the primary cause of disability, is the most common musculoskeletal disorder globally and the primary cause of disability. Magnetic resonance imaging (MRI) studies are inconclusive and less sensitive for identifying and classifying patients with LBP. Hence, this study aimed to investigate the role of artificial intelligence (AI) models in the prediction of LBP using T2 weighted MRI image of the lumbar spine.

Methods: This was a prospective case-control study. A total of 200 MRI patients (100 cases and controls each) referred for lumbar spine and whole spine screening were included. The scans were performed using 3.0 Tesla MRI (United Imaging Healthcare). T2 weighted images of the lumbar spine were segmented to extract radiomic features. Machine learning (ML) models, such as random forest, decision tree, logistic regression, K-nearest neighbors, adaboost, and deep learning methods (DL), such as ResNet and GoogleNet, were used, and performance measures were calculated.

Results: Our study showed that Random forest and AdaBoost are the most reliable ML models for predicting LBP. Random forest showed high performance with area under curve (AUC) values from 0.83 to 0.88 across all lumbar vertebrae and L2-L3, L3-L4, and L4-L5 intervertebral discs (IVDs), with AUCs of 0.88 the highest at L5-S1 IVD (0.92). Adaboost demonstrated high performance at the L2-L5 vertebrae with AUC values of 0.82 to 0.90, with the highest AUC (0.97) at the L5-S1 IVD. Among the DL models, GoogleNet outperformed the other models at 30 epochs with an accuracy of 0.85, followed by ResNet 18 (30 epochs) with an accuracy of 0.84.

Conclusion: The study demonstrated that ML and DL models can effectively predict LBP from MRI T2 weighted image of the lumbar spine. ML and DL models could also enhance the diagnostic accuracy of LBP, potentially leading to better patient management and outcomes.

Keywords: Deep learning; Machine learning; intervertebral discs; low back pain; lumbar vertebrae.

PubMed Disclaimer

Conflict of interest statement

No competing interests were disclosed.

Figures

Figure 1.
Figure 1.. Showing the segmentation of lumbar vertebrae and intervertebral disc on T2 weighted image.
Figure 2.
Figure 2.. Architectural configuration delineating the structure of ResNet50.
Figure 3.
Figure 3.. Architectural configuration delineating the structure of ResNet18.
Figure 4.
Figure 4.. Architectural configuration delineating the structure of GoogleNet.
Figure 5.
Figure 5.. ROC curve and confusion matrix for random forest (a,b) and adaboost (c,d) at L4.
Figure 6.
Figure 6.. ROC curve and confusion matrix for random forest (a,b) and adaboost (c,d) at L5.
Figure 7.
Figure 7.. ROC curve and confusion matrix for random forest (a,b) and adaboost (c,d) at L5-S1 IVD.

Similar articles

Cited by

References

    1. GBD 2021 Low Back Pain Collaborators: Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(6):e316–e329. - PMC - PubMed
    1. Gu Y, Wang Z, Shi H, et al. : Global, Regional, and National Change Patterns in the Incidence of Low Back Pain From 1990 to 2019 and Its Predicted Level in the Next Decade. Int. J. Public Health. 2024 Feb;69(69):1606299. 10.3389/ijph.2024.1606299 - DOI - PMC - PubMed
    1. Hartvigsen J, Hancock MJ, Kongsted A, et al. : What low back pain is and why we need to pay attention. Lancet. 2018;391(10137):2356–2367. 10.1016/S0140-6736(18)30480-X - DOI - PubMed
    1. Chou R, Shekelle P: Will this patient develop persistent disabling low back pain? JAMA. 2010;303(13):1295–1302. 10.1001/jama.2010.344 - DOI - PubMed
    1. Videman T, Battie MC, Gibbons LE, et al. : Associations between back pain history and lumbar MRI findings. Spine. 2003 Mar;28(6):582–588. 10.1097/01.BRS.0000049905.44466.73 - DOI - PubMed

LinkOut - more resources