Do Patients of Different Levels of Affluence Receive Different Care for Pediatric Osteosarcomas? One Institution's Experience
- PMID: 39485923
- PMCID: PMC11936618
- DOI: 10.1097/CORR.0000000000003299
Do Patients of Different Levels of Affluence Receive Different Care for Pediatric Osteosarcomas? One Institution's Experience
Abstract
Background: The published reports examining socioeconomic factors and their relationship to osteosarcoma presentation and treatment suggest an association between lower socioeconomic status and a worse response to chemotherapy and lower survivorship. However, the driving factors behind these disparities are unclear. The Child Opportunity Index was developed by diversitydatakids.org ( https://www.diversitydatakids.org/ ) in 2014 to cumulatively quantify social determinants of health in an index specifically tailored toward a pediatric population and organized by census tract. The Childhood Opportunity Index can be used to explore the relationship between a patient's socioeconomic background and disparities in osteosarcoma presentation, treatment, and outcomes.
Question/purposes: Are differences in a child's Childhood Opportunity Index score associated with differences in (1) time from symptom onset to first office visit for osteosarcoma, (2) timing of chemotherapy or timing and type of surgical resection, or (3) initial disease severity, development of metastatic disease, or overall survival?
Methods: A retrospective therapeutic study was conducted using data drawn from the institutional records of a large pediatric tertiary cancer center located in the Mid-Atlantic region of the United States from the years 2006 to 2022. Our main site is in an urban setting, with ample access to public transit. Patients were excluded from analysis if they were seeking a second opinion or our institution was not the main point of orthopaedic care (20% [45 of 223]). Of the remaining patients, those with incomplete electronic medical records (24% [43 of 178]), resided in an international country (5% [9 of 178]), presented after relapse (4% [8 of 178]), or lacked 2 years of follow-up at our institution (3% [5 of 178]) were excluded as well. A total of 113 pediatric patients (children younger than 18 years) met the inclusion criteria. The Child Opportunity Index is a composite index derived from three domains (education, health and environment, and social and economic) and 29 indicators within the domains that serve to capture the cumulative effect of disparities on child well-being. National Childhood Opportunity scores were collected and scored from 1 to 100. Each score represents an equal proportion of the US population of children 18 years of age or younger. A higher number indicates higher levels of socioeconomic opportunity. The overall Childhood Opportunity Index score was then broken down into three groups representative of the child's relative socioeconomic opportunity: lowest tertile for scores < 34, middle tertile for scores between 34 and 66, and highest tertile for scores > 66. Means, ranges, medians, IQRs, and percentages were used to describe the study sample. Data analysis was conducted across the three groups (lowest tertile, middle, and highest), assessing differences in time to presentation, treatment variations, disease severity, and overall survivorship. Chi-square and Fisher exact tests were applied to compare categorical variables. Mann-Whitney U tests compared continuous data. Kaplan-Meier survival analysis, stratified by Childhood Opportunity Index tertile, was performed for a 5-year period to evaluate the development of metastatic disease and overall survivorship. A log-rank test was applied to evaluate statistical significance. Due to the small sample size, we were unable to control potential confounders such as race and insurance. However, the three domains (education, health and environment, and social and economic) encapsulated by the Childhood Opportunity Index data indirectly account for disparities related to race and insurance status.
Results: There was no association between lower levels of socioeconomic opportunity, as expressed by the lack of difference between the Childhood Opportunity Index tertiles for the interval between symptom onset and first office visit (mean ± SD lowest tertile 77 ± 67 days [95% confidence interval (CI) 60 to 94], middle tertile 69 ± 94 days [95% CI 50 to 89], and highest tertile 56 ± 58 days [95% CI 41 to 71]; p = 0.3). Similarly, we found no association between lower levels of socioeconomic opportunity, as expressed by the lack of difference between the Childhood Opportunity Index tertiles and the time elapsed from the first office visit to the first chemotherapy session (lowest tertile 19 ± 12 days [95% CI 12 to 26], middle 19 ± 14 days [95% CI 11 to 26], and highest 15 ± 9.7 days [95% CI 8.4 to 21]; p = 0.31), the time to surgical resection (lowest tertile 99 ± 35 days [95% CI 87 to 111], middle 88 ± 28 days [95% CI 77 to 99], and highest 102 ± 64 days [95% CI 86 to 118]; p = 0.24), or the type of surgical resection (limb-sparing versus amputation: 84% [21 of 25] in lowest tertile, 83% [24 of 29] in the middle tertile, and 81% [48 of 59] in the highest tertile received limb-sparing surgery; p = 0.52). Finally, we found no differences in terms of disease-free survival at 5 years (lowest tertile 27% [95% CI 7.8% to 43%], middle 44% [95% CI 23% to 59%], and highest 56% [95% CI 40% to 67%]; p = 0.22), overall survival (lowest 74% [95% CI 58% to 95%], middle 82% [95% CI 68% to 98%], and highest 64% [95% CI 52% to 78%]; p = 0.27), or in terms of survivorship of the cohort, excluding patients who presented with metastatic disease (lowest 84% [95% CI 68% to 100%], middle 91% [95% CI 80% to 100%], and highest 68% [95% CI 55% to 83%]; p = 0.10).
Conclusion: In our single-center retrospective study of 113 children who presented with osteosarcoma, we did not find an association between a patient's national socioeconomic opportunity and their time to presentation, chemotherapy treatment, time to and type of surgical resection, or disease-free and overall survival. Prior work has shown an association between socioeconomic background and disparities in osteosarcoma treatment. It is possible that these findings will be similar to those from other hospitals and geographic areas, but based on our findings, we believe that proximity to providers, access to public transit, and regional insurance policies may help diminish these disparities. Future multicenter studies are needed to further explore the role that regional variations and the aforementioned factors may play in osteosarcoma treatment to help inform the direction of public policy.
Level of evidence: Level III, therapeutic study.
Copyright © 2024 by the Association of Bone and Joint Surgeons.
Conflict of interest statement
Each author certifies that there are no funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article related to the author or any immediate family members. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request.
Similar articles
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
-
Does Augmenting Irradiated Autografts With Free Vascularized Fibula Graft in Patients With Bone Loss From a Malignant Tumor Achieve Union, Function, and Complication Rate Comparably to Patients Without Bone Loss and Augmentation When Reconstructing Intercalary Resections in the Lower Extremity?Clin Orthop Relat Res. 2025 Jun 26. doi: 10.1097/CORR.0000000000003599. Online ahead of print. Clin Orthop Relat Res. 2025. PMID: 40569278
-
What Are the Complications, Function, and Survival of Tumor-devitalized Autografts Used in Patients With Limb-sparing Surgery for Bone and Soft Tissue Tumors? A Japanese Musculoskeletal Oncology Group Multi-institutional Study.Clin Orthop Relat Res. 2023 Nov 1;481(11):2110-2124. doi: 10.1097/CORR.0000000000002720. Epub 2023 Jun 14. Clin Orthop Relat Res. 2023. PMID: 37314384 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Dietary interventions for recurrent abdominal pain in childhood.Cochrane Database Syst Rev. 2017 Mar 23;3(3):CD010972. doi: 10.1002/14651858.CD010972.pub2. Cochrane Database Syst Rev. 2017. PMID: 28334433 Free PMC article.
Cited by
-
CORR Insights®: Do Patients of Different Levels of Affluence Receive Different Care for Pediatric Osteosarcomas? One Institution's Experience.Clin Orthop Relat Res. 2025 Apr 1;483(4):759-761. doi: 10.1097/CORR.0000000000003359. Epub 2024 Dec 31. Clin Orthop Relat Res. 2025. PMID: 39787417 No abstract available.
References
-
- AHIP. The value of Medicaid: providing access to care and preventive health services. Available at: https://www.ahip.org/resources/the-value-of-medicaid-providing-access-to.... Accessed February 14, 2024.
-
- Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776-790. - PubMed
-
- Bouchard L, Albertini M, Batista R. Research on health inequalities: a bibliometric analysis (1966-2014). Soc Sci Med. 2015;141:100-108. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous