Optimized psilocybin production in tryptophan catabolism-repressed fungi
- PMID: 39487767
- PMCID: PMC11530996
- DOI: 10.1111/1751-7915.70039
Optimized psilocybin production in tryptophan catabolism-repressed fungi
Abstract
The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a 'Breakthrough Therapy' by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l-tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3-dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of A. nidulans resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space-time-yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.
© 2024 The Author(s). Microbial Biotechnology published by John Wiley & Sons Ltd.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
De Novo Biosynthesis of Antidepressant Psilocybin in Escherichia coli.Microb Biotechnol. 2025 Apr;18(4):e70135. doi: 10.1111/1751-7915.70135. Microb Biotechnol. 2025. PMID: 40177917 Free PMC article.
-
Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives.Metab Eng. 2020 Jul;60:25-36. doi: 10.1016/j.ymben.2019.12.007. Epub 2020 Mar 26. Metab Eng. 2020. PMID: 32224264 Free PMC article.
-
Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.Biotechnol Bioeng. 2014 Jan;111(1):115-24. doi: 10.1002/bit.24993. Epub 2013 Jul 22. Biotechnol Bioeng. 2014. PMID: 23836015
-
Lactose and D-galactose catabolism in the filamentous fungus Aspergillus nidulans.Acta Microbiol Immunol Hung. 2008 Jun;55(2):119-24. doi: 10.1556/AMicr.55.2008.2.4. Acta Microbiol Immunol Hung. 2008. PMID: 18595317 Review.
-
Genetic alterations affecting the genes encoding the enzymes of the kynurenine pathway and their association with human diseases.Mutat Res Rev Mutat Res. 2018 Apr-Jun;776:32-45. doi: 10.1016/j.mrrev.2018.03.001. Epub 2018 Mar 14. Mutat Res Rev Mutat Res. 2018. PMID: 29807576 Review.
Cited by
-
Engineering Saccharomyces cerevisiae for medical applications.Microb Cell Fact. 2025 Jan 9;24(1):12. doi: 10.1186/s12934-024-02625-5. Microb Cell Fact. 2025. PMID: 39789534 Free PMC article. Review.
-
De Novo Biosynthesis of Antidepressant Psilocybin in Escherichia coli.Microb Biotechnol. 2025 Apr;18(4):e70135. doi: 10.1111/1751-7915.70135. Microb Biotechnol. 2025. PMID: 40177917 Free PMC article.
-
Biochemical Insights into Diverse Psilocybe Mushrooms and Their Metabolites as Sources of Neuroactive Agents: A Review.Curr Microbiol. 2025 Jul 15;82(9):386. doi: 10.1007/s00284-025-04379-8. Curr Microbiol. 2025. PMID: 40663181 Review.
-
In Vitro Psilocybin Synthesis by Co-Immobilized Enzymes.Chemistry. 2025 May 22;31(29):e202501037. doi: 10.1002/chem.202501037. Epub 2025 Apr 21. Chemistry. 2025. PMID: 40202903 Free PMC article.
References
-
- Adams, A.M. , Kaplan, N.A. , Wei, Z. , Brinton, J.D. , Monnier, C.S. , Enacopol, A.L. et al. (2019) In vivo production of psilocybin in E. coli . Metabolic Engineering, 56, 111–119. - PubMed
-
- Anderlei, T. & Büchs, J. (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochemical Engineering Journal, 7, 157–162. - PubMed
-
- Blei, F. , Baldeweg, F. , Fricke, J. & Hoffmeister, D. (2018) Biocatalytic production of psilocybin and derivatives in tryptophan synthase‐enhanced reactions. Chemistry—a European Journal, 24, 10028–10031. - PubMed
-
- Bok, J.W. , Hoffmeister, D. , Maggio‐Hall, L.A. , Murillo, R. , Glasner, J.D. & Keller, N.P. (2006) Genomic mining for aspergillus natural products. Chemistry & Biology, 13, 31–37. - PubMed
-
- Bouhired, S. , Weber, M. , Kempf‐Sontag, A. , Keller, N.P. & Hoffmeister, D. (2007) Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology, 44, 1134–1145. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources