Non-Amontons frictional behaviors of grain boundaries at layered material interfaces
- PMID: 39488520
- PMCID: PMC11531579
- DOI: 10.1038/s41467-024-53581-y
Non-Amontons frictional behaviors of grain boundaries at layered material interfaces
Abstract
Against conventional wisdom, corrugated grain boundaries in polycrystalline graphene, grown on Pt(111) surfaces, are shown to exhibit negative friction coefficients and non-monotonic velocity dependence. Using combined experimental, simulation, and modeling efforts, the underlying energy dissipation mechanism is found to be dominated by dynamic buckling of grain boundary dislocation protrusions. The revealed mechanism is expected to appear in a wide range of polycrystalline two-dimensional material interfaces, thus supporting the design of large-scale dry superlubric contacts.
© 2024. The Author(s).
Conflict of interest statement
The Authors declare no competing interests.
Figures




Similar articles
-
Superlubric polycrystalline graphene interfaces.Nat Commun. 2021 Sep 28;12(1):5694. doi: 10.1038/s41467-021-25750-w. Nat Commun. 2021. PMID: 34584082 Free PMC article.
-
Stick-Slip Dynamics of Moiré Superstructures in Polycrystalline 2D Material Interfaces.Phys Rev Lett. 2022 Dec 30;129(27):276101. doi: 10.1103/PhysRevLett.129.276101. Phys Rev Lett. 2022. PMID: 36638291
-
Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene.Nanotechnology. 2019 Sep 20;30(38):385701. doi: 10.1088/1361-6528/ab2a87. Epub 2019 Jun 18. Nanotechnology. 2019. PMID: 31212265
-
Tuning friction to a superlubric state via in-plane straining.Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24452-24456. doi: 10.1073/pnas.1907947116. Epub 2019 Oct 28. Proc Natl Acad Sci U S A. 2019. PMID: 31659028 Free PMC article.
-
The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials.Adv Mater. 2024 Jan;36(4):e2304855. doi: 10.1002/adma.202304855. Epub 2023 Nov 27. Adv Mater. 2024. PMID: 37572037 Review.
Cited by
-
Frictional Dissipation and Scaling Laws at van der Waals Interfaces: The Role of Edge and Corner Elastic Moiré Pinning.ACS Nano. 2025 Aug 19;19(32):29255-29264. doi: 10.1021/acsnano.5c04617. Epub 2025 Aug 10. ACS Nano. 2025. PMID: 40785113 Free PMC article.
References
-
- Hod, O., Meyer, E., Zheng, Q. & Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature563, 485–492 (2018). - PubMed
-
- Berman, D., Erdemir, A. & Sumant, A. V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano12, 2122–2137 (2018). - PubMed
-
- Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett.92, 126101 (2004). - PubMed
-
- Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett.108, 205503 (2012). - PubMed
-
- Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater.17, 894 (2018). - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources