Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar;60(3):162042.
doi: 10.1016/j.jpedsurg.2024.162042. Epub 2024 Oct 25.

Magnets in Paediatric Surgery

Affiliations
Review

Magnets in Paediatric Surgery

Oliver J Muensterer. J Pediatr Surg. 2025 Mar.

Abstract

Magnetism, recognized in ancient Greece and China, is a fundamental physical force influencing numerous domains, including medicine and surgery. Historically, the medical use of magnets dates back over two millennia. As proof, the ancient Sanskrit medical textbook Sushruta Samhita describes the removal of a metallic arrow lodged in the flesh with a magnet. Modern uses span from diagnostic to therapeutic applications, including in paediatric surgery. High-field magnetism, utilized in Magnetic Resonance Imaging and Transcranial Magnetic Stimulation (TMS), shows promise for various medical conditions, including depression and neurodegenerative diseases. Despite controversy surrounding low-field magnetism, its potential remains a topic of interest. One of the applications in paediatric surgery that has been evaluated in a randomized controlled trial is magnetic acupuncture for supplementary treatment of postoperative pain. As most paediatric surgeons are well aware, the use of magnets also poses risks, particularly in children, where ingested magnets can cause severe gastrointestinal complications. Regulations have tightened in response to increasing cases of magnet ingestion-related injuries but more needs to be done to avoid injury. Currently, magnets play crucial roles in a variety of medical applications, including magnetic cell sorting and therapeutic devices. Notably, magnetic compression anastomosis, which uses magnets to facilitate luminal tissue joining, have seen significant advancements. Innovations include devices for oesophageal atresia repair, with recent studies showing promising results in animal models and early clinical trials. Future research should focus on optimizing magnetic devices, expanding their applications, and ensuring safety. The continued exploration of magnetism's effects on living tissues and the development of new magnetic technologies could revolutionize medical and surgical practices, particularly in paediatric care.

Keywords: Acupuncture; Anastomosis; Low-field high-field magnets; Magnets; Paediatric surgery.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest The author owns stock options of Myka Labs, the maker of Connect-EA™ magnets for esophageal atresia repair.