Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 15;89(22):16865-16872.
doi: 10.1021/acs.joc.4c02244. Epub 2024 Nov 3.

Three-Component 1,2-Dioxygenation of 1,3-Dienes Using Carboxylic Acids and TEMPO

Affiliations

Three-Component 1,2-Dioxygenation of 1,3-Dienes Using Carboxylic Acids and TEMPO

Sophia M Baldassarre et al. J Org Chem. .

Abstract

A mild, metal-free 1,2-dioxygenation of 1,3-dienes using TEMPO and carboxylic acids is reported. This method includes examples for a variety of 1,3-dienes as well as aliphatic and aromatic carboxylic acids. This reaction also demonstrates complete site- and regioselectivity in the oxygen addition. Furthermore, extensive derivatization of the differential oxygen groups in the product has been demonstrated, including reduction of the remaining alkene to access alkyl, vicinally dioxygenated scaffolds. Finally, this reaction is shown both experimentally and computationally to occur through carboxylic acid-driven disproportionation of TEMPO.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Challenges in Selectivity with the 1,2-Difunctionalization of 1,3-Dienes
Scheme 2
Scheme 2. Methods for the 1,2-Dioxygenation of 1,3-Dienes
Scheme 3
Scheme 3. Competition of 1,3-Dienes and Alkenesa
Isolated yields on a 0.1 mmol scale. Isolated as a 1:9.7 mixture. ND = not detected by 1H NMR. [T] = 2,2,6,6-tetramethylpiperidine.
Scheme 4
Scheme 4. Derivatization of the Product Scaffold
Isolated yields on a 0.05 mmol scale.
Scheme 5
Scheme 5. TEMPO Oxidation
Scheme 6
Scheme 6. Mechanism for the 1,2-Dioxygenation of 1,3-Dienes through TEMPO Disproportionation (A) or Radical (B) Pathways
Scheme 7
Scheme 7. Insights into the Mechanism of the 1,2-Dioxygenation of 1,3-Dienes
ND = not detected by 1H NMR. Isolated yields on a 0.1 mmol scale.
Scheme 8
Scheme 8. Reactions and Calculated ΔG Values in DCE for the Disproportionation (A) and Radical (B) Mechanisms
Figure 1
Figure 1
Molecular orbitals relevant to the proposed mechanism. (A) SOMO for TEMPO (3a), (B) SOMO for TEMPOH+ radical (i), and (C) LUMO for TEMPO+ (ii).

References

    1. McGrath N. A.; Brichacek M.; Njardarson J. T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 2010, 87, 1348–1349. 10.1021/ed1003806. - DOI
    1. Kolb H. C.; VanNieuwenhze M. S.; Sharpless K. B. Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94, 2483–2547. 10.1021/cr00032a009. - DOI
    2. Noe M. C.; Letavic M. A.; Snow S. L. Asymmetric Dihydroxylation of Alkenes. Org. React. 2005, 109–625. 10.1002/0471264180.or066.02. - DOI
    3. Rawling M. J.; Tomkinson N. C. O. Metal-free syn-dioxygenation of alkenes. Org. Biomol. Chem. 2013, 11, 1434–1440. 10.1039/c3ob27387c. - DOI - PubMed
    4. Bag R.; De P. B.; Pradhan S.; Punniyamurthy T. Recent Advances in Radical Dioxygenation of Olefins. Eur. J. Org. Chem. 2017, 2017, 5424–5438. 10.1002/ejoc.201700512. - DOI
    5. Wang C. Vicinal anti-Dioxygenation of Alkenes. Asian J. Org. Chem. 2018, 7, 509–521. 10.1002/ajoc.201700621. - DOI
    6. Bataille C. J. R.; Donohoe T. J. Osmium-free direct syn-dihydroxylation of alkenes. Chem. Soc. Rev. 2011, 40, 114–128. 10.1039/B923880H. - DOI - PubMed
    7. Colomer I.; Barcelos R. C.; Christensen K. E.; Donohoe T. J. Orthogonally Protected 1,2-Diols from Electron-Rich Alkenes Using Metal-Free Olefin syn-Dihydroxylation. Org. Lett. 2016, 18, 5880–5883. 10.1021/acs.orglett.6b02959. - DOI - PubMed
    1. Clennan E. L. Synthetic and mechanistic aspects of 1,3-diene photooxidation. Tetrahedron 1991, 47, 1343–1382. 10.1016/S0040-4020(01)86413-9. - DOI
    2. Ghogare A. A.; Greer A. Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chem. Rev. 2016, 116, 9994–10034. 10.1021/acs.chemrev.5b00726. - DOI - PubMed
    3. de Souza J. M.; Brocksom T. J.; McQuade D. T.; de Oliveira K. T. Continuous Endoperoxidation of Conjugated Dienes and Subsequent Rearrangements Leading to C–H Oxidized Synthons. J. Org. Chem. 2018, 83, 7574–7585. 10.1021/acs.joc.8b01307. - DOI - PubMed
    1. Burks H. E.; Kliman L. T.; Morken J. P. Asymmetric 1,4-Dihydroxylation of 1,3-Dienes by Catalytic Enantioselective Diboration. J. Am. Chem. Soc. 2009, 131, 9134–9135. 10.1021/ja809610h. - DOI - PMC - PubMed
    2. Ely R. J.; Morken J. P. Ni(0)-Catalyzed 1,4-Selective Diboration of Conjugated Dienes. Org. Lett. 2010, 12, 4348–4351. 10.1021/ol101797f. - DOI - PMC - PubMed
    3. Schuster C. H.; Li B.; Morken J. P. Modular Monodentate Oxaphospholane Ligands: Utility in Highly Efficient and Enantioselective 1,4-Diboration of 1,3-Dienes. Angew. Chem., Int. Ed. 2011, 50, 7906–7909. 10.1002/anie.201102404. - DOI - PMC - PubMed
    4. Hong K.; Morken J. P. Catalytic Enantioselective Diboration of Cyclic Dienes. A Modified Ligand with General Utility. J. Org. Chem. 2011, 76, 9102–9108. 10.1021/jo201321k. - DOI - PMC - PubMed
    1. Kliman L. T.; Mlynarski S. N.; Ferris G. E.; Morken J. P. Catalytic Enantioselective 1,2-Diboration of 1,3-Dienes: Versatile Reagents for Stereoselective Allylation. Angew. Chem., Int. Ed. 2012, 51, 521–524. 10.1002/anie.201105716. - DOI - PMC - PubMed

LinkOut - more resources