Connectivity of Parameter Regions of Multistationarity for Multisite Phosphorylation Networks
- PMID: 39495318
- PMCID: PMC11534856
- DOI: 10.1007/s11538-024-01368-z
Connectivity of Parameter Regions of Multistationarity for Multisite Phosphorylation Networks
Abstract
The parameter region of multistationarity of a reaction network contains all the parameters for which the associated dynamical system exhibits multiple steady states. Describing this region is challenging and remains an active area of research. In this paper, we concentrate on two biologically relevant families of reaction networks that model multisite phosphorylation and dephosphorylation of a substrate at n sites. For small values of n, it had previously been shown that the parameter region of multistationarity is connected. Here, we extend these results and provide a proof that applies to all values of n. Our techniques are based on the study of the critical polynomial associated with these reaction networks together with polyhedral geometric conditions of the signed support of this polynomial.
Keywords: Connectivity; Gale duality; Newton polytope; Phosphorylation networks; Signed support.
© 2024. The Author(s).
Figures
Similar articles
-
Multistationarity in sequential distributed multisite phosphorylation networks.Bull Math Biol. 2013 Nov;75(11):2028-58. doi: 10.1007/s11538-013-9878-6. Epub 2013 Sep 19. Bull Math Biol. 2013. PMID: 24048546
-
Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.Bull Math Biol. 2019 Apr;81(4):1089-1121. doi: 10.1007/s11538-018-00555-z. Epub 2018 Dec 18. Bull Math Biol. 2019. PMID: 30564990
-
The Multistationarity Structure of Networks with Intermediates and a Binomial Core Network.Bull Math Biol. 2019 Jul;81(7):2428-2462. doi: 10.1007/s11538-019-00612-1. Epub 2019 May 17. Bull Math Biol. 2019. PMID: 31102135
-
Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements.FEBS J. 2006 Sep;273(17):3915-26. doi: 10.1111/j.1742-4658.2006.05394.x. FEBS J. 2006. PMID: 16934033 Review.
-
Computational modeling of signal transduction networks: a pedagogical exposition.Methods Mol Biol. 2012;880:219-41. doi: 10.1007/978-1-61779-833-7_10. Methods Mol Biol. 2012. PMID: 23361987 Review.
References
-
- Ben-Israel A (1964) Notes on linear inequalities, I: the intersection of the nonnegative orthant with complementary orthogonal subspaces. J Math Anal Appl 9(2):303–314
-
- Bradford Russell, Davenport James H., England Matthew, Errami Hassan, Gerdt Vladimir, Grigoriev Dima, Hoyt Charles, Košta Marek, Radulescu Ovidiu, Sturm Thomas, Weber Andreas (2020) Identifying the parametric occurrence of multiple steady states for some biological networks. J Symbol Comput 98:84–119. 10.1016/j.jsc.2019.07.008
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources