Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Mar 5;261(7):3006-12.

Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes

  • PMID: 3949758
Free article

Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes

P E Starke et al. J Biol Chem. .
Free article

Abstract

It has been proposed that alterations in intracellular calcium homeostasis mediate the genesis of lethal cell injury with an acute oxidative stress. It is shown here, however, that such changes can be dissociated by two different means from the cell death occurring with the exposure of cultured hepatocytes to hydrogen peroxide generated either in the medium by glucose oxidase or intracellularly by the mechanism of menadione. The chelation of intracellular ferric iron with deferoxamine inhibits the formation of hydroxyl radicals from hydrogen peroxide and prevents cell killing. Deferoxamine did not prevent, however, an elevation of the cytosolic Ca2+ ion concentration detected as an activation of phosphorylase alpha. Sulfhydryl reagents inhibited the rise in phosphorylase alpha activity in deferoxamine-pretreated hepatocytes. Conversely, cultured hepatocytes were depleted of Ca2+ ions by treatment with EGTA in a calcium-free medium. Calcium-depleted cells were not resistant to the toxicity of hydrogen peroxide despite the virtual elimination of the activation of phosphorylase alpha. In contrast, it was possible to kill cultured hepatocytes by a mechanism dependent upon a disordered intracellular calcium homeostasis using hepatocytes pretreated in calcium-free medium with the ionophore A23187. These cells were killed in a dose-dependent manner by the addition of calcium ions to the culture medium in concentrations ranging from 0.1 to 2.0 mM. There was a similar dose-dependent activation of phosphorylase alpha, but phosphorylase alpha activities were higher than with H2O2 at comparable cell killing. Deferoxamine pretreatment and sulfhydryl reagents had no effect on the loss of viability with this calcium-dependent cell killing.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources