On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness
- PMID: 3949873
- PMCID: PMC2114131
- DOI: 10.1083/jcb.102.3.1067
On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness
Abstract
The tubulin monomers of brain microtubules reassembled in vitro are arranged on a 3-start helix, irrespective of whether the number of protofilaments is 13 or 14. The dimer packing is that of the B-lattice described for flagellar microtubules. This implies that the tubulin core of microtubules contains at least one helical discontinuity. Neither 5-start nor 8-start helices have a physical significance and thus cannot be implicated in models of microtubule elongation, but the structure is compatible with elongation of protofilaments by dimers or protofilamentous oligomers. The inner and outer surfaces of the microtubule wall can be visualized by propane jet freezing, freeze fracturing, and metal replication, at a resolution of at least 4 nm. The 3-start helix is left-handed, in contrast to a previous study based on negative staining and shadowing. The reasons for this discrepancy are discussed.
Similar articles
-
The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice.J Cell Biol. 1995 Jan;128(1-2):81-94. doi: 10.1083/jcb.128.1.81. J Cell Biol. 1995. PMID: 7822425 Free PMC article.
-
Direct visualization of the microtubule lattice seam both in vitro and in vivo.J Cell Biol. 1994 Dec;127(6 Pt 2):1965-71. doi: 10.1083/jcb.127.6.1965. J Cell Biol. 1994. PMID: 7806574 Free PMC article.
-
Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly.J Cell Biol. 1981 May;89(2):323-37. doi: 10.1083/jcb.89.2.323. J Cell Biol. 1981. PMID: 7251656 Free PMC article.
-
New data on the microtubule surface lattice.Biol Cell. 1991;71(1-2):161-74. doi: 10.1016/0248-4900(91)90062-r. Biol Cell. 1991. PMID: 1912942 Review.
-
Microtubule Inner Proteins: A Meshwork of Luminal Proteins Stabilizing the Doublet Microtubule.Bioessays. 2018 Mar;40(3). doi: 10.1002/bies.201700209. Epub 2018 Feb 12. Bioessays. 2018. PMID: 29430673 Review.
Cited by
-
Tubulin protofilaments and kinesin-dependent motility.J Cell Biol. 1992 Aug;118(4):865-75. doi: 10.1083/jcb.118.4.865. J Cell Biol. 1992. PMID: 1500429 Free PMC article.
-
Mechanics and kinetics of dynamic instability.Elife. 2020 May 11;9:e54077. doi: 10.7554/eLife.54077. Elife. 2020. PMID: 32392128 Free PMC article.
-
Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.Proc Natl Acad Sci U S A. 2022 Jan 11;119(2):e2114994119. doi: 10.1073/pnas.2114994119. Proc Natl Acad Sci U S A. 2022. PMID: 34996871 Free PMC article.
-
Dynamic and asymmetric fluctuations in the microtubule wall captured by high-resolution cryoelectron microscopy.Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16976-16984. doi: 10.1073/pnas.2001546117. Epub 2020 Jul 7. Proc Natl Acad Sci U S A. 2020. PMID: 32636254 Free PMC article.
-
Force generation by microtubule assembly/disassembly in mitosis and related movements.Mol Biol Cell. 1995 Dec;6(12):1619-40. doi: 10.1091/mbc.6.12.1619. Mol Biol Cell. 1995. PMID: 8590794 Free PMC article. Review.