Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 25;64(22):8521-8536.
doi: 10.1021/acs.jcim.4c01267. Epub 2024 Nov 5.

CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein

Fengling Li  1 Suzanne Ackloo  1 Cheryl H Arrowsmith  1   2   3 Fuqiang Ban  4 Christopher J Barden  5   6 Hartmut Beck  7 Jan Beránek  8 Francois Berenger  9 Albina Bolotokova  1 Guillaume Bret  10 Marko Breznik  11 Emanuele Carosati  12 Irene Chau  1 Yu Chen  11 Artem Cherkasov  4 Dennis Della Corte  13 Katrin Denzinger  11 Aiping Dong  1 Sorin Draga  14   15 Ian Dunn  16 Kristina Edfeldt  17 Aled Edwards  1   18 Merveille Eguida  10 Paul Eisenhuth  19   20 Lukas Friedrich  21 Alexander Fuerll  19 Spencer S Gardiner  13 Francesco Gentile  4   22   23 Pegah Ghiabi  1 Elisa Gibson  1 Marta Glavatskikh  24 Christoph Gorgulla  25   26 Judith Guenther  27 Anders Gunnarsson  28 Filipp Gusev  29   30 Evgeny Gutkin  29 Levon Halabelian  1   31 Rachel J Harding  1   32   31 Alexander Hillisch  33 Laurent Hoffer  34 Anders Hogner  35 Scott Houliston  3 John J Irwin  36 Olexandr Isayev  29   30 Aleksandra Ivanova  37 Celien Jacquemard  10 Austin J Jarrett  13 Jan H Jensen  38 Dmitri Kireev  39 Julian Kleber  11 S Benjamin Koby  29 David Koes  16 Ashutosh Kumar  40 Maria G Kurnikova  29 Alina Kutlushina  37 Uta Lessel  41 Fabian Liessmann  19 Sijie Liu  11 Wei Lu  42 Jens Meiler  19   20   43 Akhila Mettu  39 Guzel Minibaeva  37 Rocco Moretti  43 Connor J Morris  13 Chamali Narangoda  29 Theresa Noonan  11 Leon Obendorf  11 Szymon Pach  11 Amit Pandit  11 Sumera Perveen  1 Gennady Poda  34   32 Pavel Polishchuk  37 Kristina Puls  11 Vera Pütter  44 Didier Rognan  10 Dylan Roskams-Edris  18 Christina Schindler  21 François Sindt  10 Vojtěch Spiwok  8 Casper Steinmann  45 Rick L Stevens  46   47 Valerij Talagayev  11 Damon Tingey  13 Oanh Vu  43 W Patrick Walters  48 Xiaowen Wang  39 Zhenyu Wang  42   49 Gerhard Wolber  11 Clemens Alexander Wolf  11 Lars Wortmann  41 Hong Zeng  1 Carlos A Zepeda  5 Kam Y J Zhang  40 Jixian Zhang  42 Shuangjia Zheng  49 Matthieu Schapira  1   31
Affiliations

CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein

Fengling Li et al. J Chem Inf Model. .

Abstract

The CACHE challenges are a series of prospective benchmarking exercises to evaluate progress in the field of computational hit-finding. Here we report the results of the inaugural CACHE challenge in which 23 computational teams each selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson's disease target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and presumably low druggability of the target is a challenge to computational hit finding methods. Of the 1955 molecules predicted by participants in Round 1 of the challenge, 73 were found to bind to LRRK2 in an SPR assay with a KD lower than 150 μM. These 73 molecules were advanced to the Round 2 hit expansion phase, where computational teams each selected up to 50 analogs. Binding was observed in two orthogonal assays for seven chemically diverse series, with affinities ranging from 18 to 140 μM. The seven successful computational workflows varied in their screening strategies and techniques. Three used molecular dynamics to produce a conformational ensemble of the targeted site, three included a fragment docking step, three implemented a generative design strategy and five used one or more deep learning steps. CACHE #1 reflects a highly exploratory phase in computational drug design where participants adopted strikingly diverging screening strategies. Machine learning-accelerated methods achieved similar results to brute force (e.g., exhaustive) docking. First-in-class, experimentally confirmed compounds were rare and weakly potent, indicating that recent advances are not sufficient to effectively address challenging targets.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources