Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec:51:343-381.
doi: 10.1016/j.plrev.2024.10.003. Epub 2024 Oct 21.

Disentangled representations for causal cognition

Affiliations
Free article
Review

Disentangled representations for causal cognition

Filippo Torresan et al. Phys Life Rev. 2024 Dec.
Free article

Abstract

Complex adaptive agents consistently achieve their goals by solving problems that seem to require an understanding of causal information, information pertaining to the causal relationships that exist among elements of combined agent-environment systems. Causal cognition studies and describes the main characteristics of causal learning and reasoning in human and non-human animals, offering a conceptual framework to discuss cognitive performances based on the level of apparent causal understanding of a task. Despite the use of formal intervention-based models of causality, including causal Bayesian networks, psychological and behavioural research on causal cognition does not yet offer a computational account that operationalises how agents acquire a causal understanding of the world seemingly from scratch, i.e. without a-priori knowledge of relevant features of the environment. Research on causality in machine and reinforcement learning, especially involving disentanglement as a candidate process to build causal representations, represents on the other hand a concrete attempt at designing artificial agents that can learn about causality, shedding light on the inner workings of natural causal cognition. In this work, we connect these two areas of research to build a unifying framework for causal cognition that will offer a computational perspective on studies of animal cognition, and provide insights in the development of new algorithms for causal reinforcement learning in AI.

Keywords: Animal cognition; Causal cognition; Causal reinforcement learning; Disentangled representations; Disentanglement.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources