Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 20;146(46):31671-31680.
doi: 10.1021/jacs.4c10065. Epub 2024 Nov 5.

Slow Magnetic Relaxation in a Californium Complex

Affiliations

Slow Magnetic Relaxation in a Californium Complex

Luis M Aguirre Quintana et al. J Am Chem Soc. .

Abstract

We report the synthesis and characterization of the macrocyclic californium derivative Na[Cf(H2O)(DOTA)] (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), 1-Cf, which was studied in comparison to its dysprosium counterpart, Na[Dy(H2O)(DOTA)], 1-Dy. Divergent spectroscopic and magnetic behaviors were observed between 1-Cf and 1-Dy. Based upon spectroscopic measurements, we propose that accessible 5f → 6d transitions (potentially operating in tandem with charge-transfer transitions) are the major contributors to the observed broadband photoluminescence in 1-Cf. Dc magnetic susceptibility data for 1-Cf revealed lower magnetic moments than those previously observed for 1-Dy and expected for an f9 free ion, which calculations suggest is the result of greater ligand field effects. Notably, 1-Cf displays slow magnetic relaxation on the time scale of ac susceptibility measurements, making it the first example of a californium-based single-molecule magnet. A side-by-side comparison of the ac susceptibility data reveals magnetic relaxation properties that widely differ between 1-Cf and 1-Dy. This divergent relaxation behavior is attributed mainly to the inherent difference in spin-orbit coupling between Dy3+ and Cf3+.

PubMed Disclaimer