Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 6:e2408154.
doi: 10.1002/adma.202408154. Online ahead of print.

Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo

Affiliations

Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo

Nicolette Driscoll et al. Adv Mater. .

Abstract

Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.

Keywords: fast‐scan cyclic voltammetry; fiber photometry; fiber‐based interface; multifunctional neural probe; neuromodulation.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

N.D., M.-J. A. and P.A. are co-founders and have a financial interest in NeuroBionics Inc.

References

    1. Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B, Berényi A, Parra LC, Melloni L, Devinsky O, Buzsáki G, Nat Commun 2018, 9, 5092. - PMC - PubMed
    1. Deisseroth K, Nat Methods 2011, 8, 26. - PMC - PubMed
    1. Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ, Neurosci J. 2006, 26, 10380. - PMC - PubMed
    1. Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O, Neuron 2017, 95, 504. - PMC - PubMed
    1. Govorunova EG, Sineshchekov OA, Li H, Spudich JL, Annual Review of Biochemistry 2017, 86, 845. - PMC - PubMed

LinkOut - more resources