A rapid one-step synthesis of silver and copper coordinated chlorine functionalized fullerene nanoparticles with enhanced antibacterial activity
- PMID: 39507748
- PMCID: PMC11533167
- DOI: 10.1039/d4na00732h
A rapid one-step synthesis of silver and copper coordinated chlorine functionalized fullerene nanoparticles with enhanced antibacterial activity
Abstract
Nanoparticle modification demonstrates a remarkable synergetic effect in combating bacteria, particularly resistant bacteria, enhancing their efficacy by simultaneously targeting multiple cellular pathways. This approach positions them as a potent solution against the growing challenge of antimicrobial-resistant (AMR) strains. This research presents an investigation into the synthesis, characterization, and antibacterial evaluation of silver-coordinated chloro-fullerenes nanoparticles (Ag-C60-Cl) and copper-coordinated chloro-fullerenes nanoparticles (Cu-C60-Cl). Utilizing an innovative, rapid one-step synthesis approach, the nanoparticles were rigorously characterized using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometer (SEM-EDS), High-Resolution Transmission Electron Microscopy (HR-TEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Raman spectroscopy. In conjunction with the analytical techniques, a computational approach was utilized to corroborate the findings from Raman spectroscopy as well as the surface potential of these nanoparticles. Moreover, the antibacterial activities of the synthesized nanoparticles were assessed against Escherichia coli (E. coli) and Methicillin-Resistant Staphylococcus aureus (MRSA). These findings demonstrated that the synthesized Ag-C60-Cl and Cu-C60-Cl nanoparticles exhibited minimum inhibitory concentrations (MIC) of 3.9 μg mL-1 and 125 μg mL-1, respectively. Reactive oxygen species (ROS) quantification, catalase assay, and efflux pump inhibition results revealed promising broad-spectrum antibacterial effects.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
References
-
- Murray C. J. L. Ikuta K. S. Sharara F. Swetschinski L. Robles Aguilar G. Gray A. Han C. Bisignano C. Rao P. Wool E. Johnson S. C. Browne A. J. Chipeta M. G. Fell F. Hackett S. Haines-Woodhouse G. Kashef Hamadani B. H. Kumaran E. A. P. McManigal B. Achalapong S. Agarwal R. Akech S. Albertson S. Amuasi J. Andrews J. Aravkin A. Ashley E. Babin F.-X. Bailey F. Baker S. Basnyat B. Bekker A. Bender R. Berkley J. A. Bethou A. Bielicki J. Boonkasidecha S. Bukosia J. Carvalheiro C. Castañeda-Orjuela C. Chansamouth V. Chaurasia S. Chiurchiù S. Chowdhury F. Clotaire Donatien R. Cook A. J. Cooper B. Cressey T. R. Criollo-Mora E. Cunningham M. Darboe S. Day N. P. J. De Luca M. Dokova K. Dramowski A. Dunachie S. J. Duong Bich T. Eckmanns T. Eibach D. Emami A. Feasey N. Fisher-Pearson N. Forrest K. Garcia C. Garrett D. Gastmeier P. Giref A. Z. Greer R. C. Gupta V. Haller S. Haselbeck A. Hay S. I. Holm M. Hopkins S. Hsia Y. Iregbu K. C. Jacobs J. Jarovsky D. Javanmardi F. Jenney A. W. J. Khorana M. Khusuwan S. Kissoon N. Kobeissi E. Kostyanev T. Krapp F. Krumkamp R. Kumar A. Kyu H. H. Lim C. Lim K. Limmathurotsakul D. Loftus M. J. Lunn M. Ma J. Manoharan A. Marks F. May J. Mayxay M. Mturi N. Munera-Huertas T. Musicha P. Musila L. A. Mussi-Pinhata M. M. Naidu R. N. Nakamura T. Nanavati R. Nangia S. Newton P. Ngoun C. Novotney A. Nwakanma D. Obiero C. W. Ochoa T. J. Olivas-Martinez A. Olliaro P. Ooko E. Ortiz-Brizuela E. Ounchanum P. Pak G. D. Paredes J. L. Peleg A. Y. Perrone C. Phe T. Phommasone K. Plakkal N. Ponce-de-Leon A. Raad M. Ramdin T. Rattanavong S. Riddell A. Roberts T. Robotham J. V. Roca A. Rosenthal V. D. Rudd K. E. Russell N. Sader H. S. Saengchan W. Schnall J. Scott J. A. G. Seekaew S. Sharland M. Shivamallappa M. Sifuentes-Osornio J. Simpson A. J. Steenkeste N. Stewardson A. J. Stoeva T. Tasak N. Thaiprakong A. Thwaites G. Tigoi C. Turner C. Turner P. Van Doorn H. R. Velaphi S. Vongpradith A. Vongsouvath M. Vu H. Walsh T. Walson J. L. Waner S. Wangrangsimakul T. Wannapinij P. Wozniak T. Young Sharma T. E. M. W. Yu K. C. Zheng P. Sartorius B. Lopez A. D. Stergachis A. Moore C. Dolecek C. Naghavi M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0. doi: 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed
-
- Centers for Disease Control and Prevention (U.S.), Antibiotic Resistance Threats in the United States, 2019, Centers for Disease Control and Prevention, U.S., 2019, doi: 10.15620/cdc:82532 - DOI
-
- Teixeira M. C.; Sanchez-Lopez E.; Espina M.; Calpena A. C.; Silva A. M.; Veiga F. J.; Garcia M. L.; Souto E. B.Advances in Antibiotic Nanotherapy, in Emerging Nanotechnologies in Immunology; Elsevier, 2018, pp. 233–259, doi: 10.1016/B978-0-323-40016-9.00009-9 - DOI
LinkOut - more resources
Full Text Sources
