Guidelines for external fixation frame rigidity and stresses
- PMID: 3950810
- DOI: 10.1002/jor.1100040108
Guidelines for external fixation frame rigidity and stresses
Abstract
Using results from FEM analyses and experiments as references, analytical methods are applied to develop simple approximate formulas to relate frame rigidity, maximal pin stresses, and peak pin-bone stresses in external fracture fixation (EFF) configurations in axial loading to the most important frame, pin, and bone parameters. It is found that, in a realistic range, the parameters can be adapted to vary the frame rigidity from about 13 N/mm to 17,000 N/mm, thereby reducing the maximal stresses in the pins and at the pin-bone interface by a factor of 140. In particular, when compromises have to be established in the frame characteristics in order to ensure a flexible configuration and limit the stress values at the same time, the formulas presented can provide useful guidelines. The side-bar separation and the pin modulus, in particular, can be adapted to decrease the rigidity, while only moderately increasing the stresses, thereby reducing changes for pin failure, pin-bone loosening, and pin-tract infection. A nomogram is presented for a quick reference to estimated relations between frame characteristics, rigidity, and stresses. It is believed that this material may be of use in EFF design and applications in clinical and animal experimental trials.
Similar articles
-
Parametric analyses of pin-bone stresses in external fracture fixation devices.J Orthop Res. 1985;3(3):341-9. doi: 10.1002/jor.1100030311. J Orthop Res. 1985. PMID: 4032105
-
The effect of rigidity on fracture healing in external fixation.Clin Orthop Relat Res. 1989 Apr;(241):24-35. Clin Orthop Relat Res. 1989. PMID: 2647334 Review.
-
[Theoretical and experimental studies on the technology of external bone fracture stabilization].Wien Klin Wochenschr Suppl. 1985;158:1-19. Wien Klin Wochenschr Suppl. 1985. PMID: 3857791 German.
-
Effects of low-modulus coatings on pin-bone contact stresses in external fixation.J Orthop Res. 1984;2(4):385-92. doi: 10.1002/jor.1100020411. J Orthop Res. 1984. PMID: 6527164
-
Biomechanics and biology of fracture repair under external fixation.Hand Clin. 1993 Nov;9(4):531-42. Hand Clin. 1993. PMID: 8300724 Review.
Cited by
-
Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study.Med Biol Eng Comput. 2018 Oct;56(10):1925-1938. doi: 10.1007/s11517-018-1830-3. Epub 2018 Apr 21. Med Biol Eng Comput. 2018. PMID: 29679256
-
RELATIONSHIP BETWEEN RIGIDITY OF EXTERNAL FIXATOR AND NUMBER OF PINS: COMPUTER ANALYSIS USING FINITE ELEMENTS.Rev Bras Ortop. 2015 Nov 4;47(5):646-50. doi: 10.1016/S2255-4971(15)30017-3. eCollection 2012 Sep-Oct. Rev Bras Ortop. 2015. PMID: 27047879 Free PMC article.
-
An engineering review of external fixators.Med Eng Phys. 2021 Dec;98:91-103. doi: 10.1016/j.medengphy.2021.11.002. Epub 2021 Nov 4. Med Eng Phys. 2021. PMID: 34848044 Free PMC article. Review.
-
Comparison of the mechanical performance of three types of unilateral, dynamizable external fixators. An experimental study.Arch Orthop Trauma Surg. 1994;113(5):271-5. doi: 10.1007/BF00443816. Arch Orthop Trauma Surg. 1994. PMID: 7946818
-
The Influence of Sagittal Pin Angulation on the Stiffness and Pull-Out Strength of a Monolateral Fixator Construct.Bioengineering (Basel). 2023 Aug 20;10(8):982. doi: 10.3390/bioengineering10080982. Bioengineering (Basel). 2023. PMID: 37627867 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources