RNA G-quadruplexes and calcium ions synergistically induce Tau phase transition in vitro
- PMID: 39510192
- PMCID: PMC11648224
- DOI: 10.1016/j.jbc.2024.107971
RNA G-quadruplexes and calcium ions synergistically induce Tau phase transition in vitro
Abstract
Tau aggregation is a defining feature of neurodegenerative tauopathies, including Alzheimer's disease, corticobasal degeneration, and frontotemporal dementia. This aggregation involves the liquid-liquid phase separation (LLPS) of Tau, followed by its sol-gel phase transition, representing a crucial step in aggregate formation both in vitro and in vivo. However, the precise cofactors influencing Tau phase transition and aggregation under physiological conditions (e.g., ion concentration and temperature) remain unclear. In this study, we unveil that nucleic acid secondary structures, specifically RNA G-quadruplexes (rG4s), and calcium ions (Ca2+) synergistically facilitated the sol-gel phase transition of human Tau under mimic intracellular ion conditions (140 mM KCl, 15 mM NaCl, and 10 mM MgCl2) at 37 °C in vitro. In the presence of molecular crowding reagents, Tau formed stable liquid droplets through LLPS, maintaining fluidity for 24 h under physiological conditions. Notably, cell-derived RNA promoted Tau sol-gel phase transition, with rG4s emerging as a crucial factor. Surprisingly, polyanion heparin did not elicit a similar response, indicating a distinct mechanism not rooted in electrostatic interactions. Further exploration underscored the significance of Ca2+, which accumulate intracellularly during neurodegeneration, as additional cofactors in promoting Tau phase transition after 24 h. Importantly, our findings demonstrate that rG4s and Ca2+ synergistically enhance Tau phase transition within 1 h when introduced to Tau droplets. Moreover, rG4-Tau aggregates showed seeding ability in cells. In conclusion, our study illuminates the pivotal roles of rG4s and Ca2+ in promoting Tau aggregation under physiological conditions in vitro, offering insights into potential triggers for tauopathy.
Keywords: RNA G-quadruplex; Tau; calcium ions; liquid–liquid phase separation; liquid–solid phase transition.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of interests The authors declare that they have no conflicts of interest with the contents of this article.
Figures




References
-
- Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988;239:285–288. - PubMed
-
- Barghorn S., Zheng-Fischhofer Q., Ackmann M., Biernat J., von Bergen M., Mandelkow E.M., et al. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochem. 2000;39:11714–11721. - PubMed
-
- Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 1998;282:1914–1917. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous