Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 10;53(48):19342-19350.
doi: 10.1039/d4dt02075h.

Exploring the versatility of MoSe2/WS2 heterostructures

Affiliations

Exploring the versatility of MoSe2/WS2 heterostructures

Tuan V Vu et al. Dalton Trans. .

Abstract

Two-dimensional materials and their combined heterostructures have paved the way for numerous next-generation electronic and optoelectronic applications. Herein, we performed first principles calculations to computationally design the MoSe2/WS2 heterostructure and consider its geometric structure, electronic properties and contact behavior, as well as the effects of the electric fields and strain. Our results show that the MoSe2/WS2 heterostructure is energetically, thermodynamically and mechanically stable. Depending on the stacking configurations, the MoSe2/WS2 heterostructure could form type-I or type-II band alignment. The versatility in contact behavior makes the MoSe2/WS2 heterostructure attractive in electronics and optoelectronics. The combination of the MoSe2/WS2 heterostructure also leads to an enhancement in the adsorption efficiency and the carrier mobility compared with the constituent components. More interestingly, our findings demonstrate that the electric field can induce the transition between type-I and type-II band alignments, as evident by the experimental measurement [J. Kistner-Morris, A. Shi, E. Liu, T. Arp, F. Farahmand, T. Taniguchi, K. Watanabe, V. Aji, C. H. Lui and N. Gabor, Nat. Commun., 2024, 15, 4075]. Additionally, we also find that strain can also induce the transition between type-I and type-II band alignments and lead to the transition from semiconductor to metal in the MoSe2/WS2 heterostructure. Our findings prove that the MoSe2/WS2 heterostructure holds significant potential for developing next-generation electronics.

PubMed Disclaimer

LinkOut - more resources