Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 20;24(46):14648-14655.
doi: 10.1021/acs.nanolett.4c03720. Epub 2024 Nov 8.

Thermal Conductivity in Biphasic Silicon Nanowires

Affiliations

Thermal Conductivity in Biphasic Silicon Nanowires

Samik Mukherjee et al. Nano Lett. .

Abstract

The work unravels the previously unexplored atomic-scale mechanism involving the interaction of phonons with crystal homointerfaces. Silicon nanowires with engineered isotopic content and crystal phases were chosen for this investigation. Crystal polytypism, manifested by the presence of both diamond cubic and rhombohedral phases within the same nanowire, provided a testbed to study the impact of phase homointerfaces on phonon transport. The lattice thermal conductivity and its temperature response were found to be markedly different in the presence of polytypism. Its origin, however, was not traced to any acoustic mismatch as the polytypic nanowires presented a similar phonon spectrum as their counterparts. Rather, phenomenological modeling and atomistic simulations identified and quantified the role of atomically rough homointerfaces and the subsequent phonon scattering from such homointerfaces in shaping the phonon behavior. This framework provides the inputs necessary to advance the design and modeling of phonon transport in nanoscale semiconductors.

Keywords: Crystal Phase Engineering; Isotope Controlled Semiconductors; Nanowires; Phonon Scattering; Thermal Transport.

PubMed Disclaimer

LinkOut - more resources