Autonomous cortisol secretion promotes vascular calcification in vivo and in vitro under hyperaldosteronism
- PMID: 39516366
- DOI: 10.1038/s41440-024-01935-w
Autonomous cortisol secretion promotes vascular calcification in vivo and in vitro under hyperaldosteronism
Abstract
Autonomous cortisol secretion (ACS) is not uncommon in patients with primary aldosteronism (PA). However, the cardiovascular burden of ACS due to its dysregulated cortisol secretion remains poorly understood. Thus, we examined the effects of ACS on vascular calcification in a hyperaldosteronism environment in vitro and in vivo. A total of 339 patients with PA with adrenal incidentaloma and low-dose dexamethasone suppression test data (cutoff level: cortisol > 1.8 μg/dL) from a prospectively maintained database were enrolled; abdominal aortic calcification (AAC) scores were quantitatively estimated. Human aortic smooth muscle cells (HAOSMCs) were used as in vitro model of vascular calcification. In this study, 65 of the 339 patients with PA had ACS; 274 did not. Patients with PA/ACS had a higher AAC score (1171.0 ± 2434.0 vs. 489.5 ± 1085.3, P = 0.012) than patients without ACS. ACS was independently associated with AAC score (β = 0.139, P = 0.004) in multivariate analysis, and post-suppression cortisol level was significantly correlated with the AAC score (P = 0.004). In the HAOSMC model, co-treatment with cortisol synergistically stimulated alkaline phosphatase activity and calcium deposition in a hyperaldosteronism environment. The stimulatory effect of cortisol was abolished by the mineralocorticoid receptor (MR) antagonist eplerenone, but not glucocorticoid receptor antagonist mifepristone, indicating a MR-dependent mechanism. In conclusion, the presence of ACS is associated with heavier vascular calcification in patients with PA. Aldosterone and cortisol synergistically activate HAOSMC calcification via MR signaling, via a process that can be attenuated by eplerenone.
Keywords: Abdominal*; Aorta; Cardiovascular Diseases/etiology*; Humans; Hypertension; Primary aldosteronism.
© 2024. The Author(s), under exclusive licence to The Japanese Society of Hypertension.
Conflict of interest statement
Compliance with ethical standards. Conflict of interest: The authors declare no competing interests.
Comment in
-
Synergistic interplay between cortisol and aldosterone: unveiling mechanisms of vascular calcification in hyperaldosteronism.Hypertens Res. 2025 Mar;48(3):1231-1233. doi: 10.1038/s41440-024-02071-1. Epub 2024 Dec 20. Hypertens Res. 2025. PMID: 39706886
References
-
- Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–300. - PubMed
-
- Hiraishi K, Yoshimoto T, Tsuchiya K, Minami I, Doi M, Izumiyama H, et al. Clinicopathological features of primary aldosteronism associated with subclinical Cushing’s syndrome. Endocr J. 2011;58:543–51. - PubMed
-
- Piaditis GP, Kaltsas GA, Androulakis II, Gouli A, Makras P, Papadogias D, et al. High prevalence of autonomous cortisol and aldosterone secretion from adrenal adenomas. Clin Endocrinol. 2009;71:772–8.
-
- Peng KY, Liao HW, Chan CK, Lin WC, Yang SY, Tsai YC, et al. Presence of subclinical hypercortisolism in clinical aldosterone-producing adenomas predicts lower clinical success. Hypertension. 2020;76:1537–44. - PubMed
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources