A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients
- PMID: 39519183
- PMCID: PMC11547050
- DOI: 10.3390/ijms252111632
A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients
Abstract
We developed a flow cytometry (FC) assay enabling the rapid and accurate identification of bacterial and viral infections using whole blood samples. The streamlined flow cytometry assay is designed to be user-friendly, making it accessible even for operators with limited experience in FC techniques. The key components of the assay focus on the expression levels of specific surface markers-CD64 on polymorphonuclear neutrophils (PMN) as a marker for bacterial infection, and CD169 on monocytes (MO) for viral infection. The strong performance indicated by an area under the receiver operating characteristic (ROC) curve of 0.94 for both PMN CD64 positive predictive value (PPV) 97.96% and negative predictive value (NPV) 76.67%, and MO CD169 PPV 82.6% and NPV 86.9%, highlight the assay's robustness in differentiating between bacterial and viral infections accurately. The FC assay includes the assessment of immune system status through HLA-DR and IL-1R2 modulation in MO, providing a useful insight into the patients' immune response. The significant increase in the frequency of MO exhibiting reduced HLA-DR expression and elevated IL-1R2 levels in infected patients (compared to healthy controls) underscores the potential of these markers as indicators of infection severity. Although the overall correlation between HLA-DR and IL-1R2 expression levels was not significant across all patients, there was a trend in patients with more severe disease suggesting that these markers may have the potential to assist in stratifying patient risk. The present FC assay has the potential to become routine in the clinical microbiology laboratory community and to be helpful in guiding clinical decision making.
Keywords: CD169; CD64; HLA-DR; bacterial and viral infection; flow cytometry; immune dysfunction; interleukin-1 receptor 2; monocytes; polymorphonuclear neutrophils.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Baron E.J., Miller J.M., Weinstein M.P., Richter S.S., Gilligan P.H., Thomson R.B., Jr., Bourbeau P., Carroll K.C., Kehl S.C., Dunne W.M., et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM) Clin. Infect. Dis. 2013;57:e22–e121. doi: 10.1093/cid/cit278. - DOI - PMC - PubMed
-
- Woodhead M., Blasi F., Ewig S., Garau J., Huchon G., Ieven M., Ortqvist A., Schaberg T., Torres A., van der Heijden G., et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clin. Microbiol. Infect. 2011;17((Suppl. S6)):E1–E59. doi: 10.1111/j.1469-0691.2011.03672.x. - DOI - PMC - PubMed
-
- Machen A., Drake T., Wang Y.F. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System. PLoS ONE. 2014;9:e87870. doi: 10.1371/journal.pone.0087870. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
