General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction
- PMID: 39524306
- PMCID: PMC11546105
- DOI: 10.1021/acscatal.2c03498
General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are of great interest to the agrochemical, materials, and pharmaceutical industries. In particular, synthetic methods to access 1,3-dicarbosubsituted BCP-aryls have recently been developed, but most protocols rely on the stepwise C-C bond formation via the initial manipulation of BCP core to make the BCP electrophile or nucleophile followed by a second step (e.g., transition-metal-mediated cross-coupling step) to form the second key BCP-aryl bond. Moreover, despite the prevalence of C-F bonds in bioactive compounds, one-pot, multicomponent cross-coupling methods to directly functionalize [1.1.1]propellane to the corresponding fluoroalkyl BCP-aryl scaffolds are lacking. In this work, we describe a conceptually different approach to access diverse (fluoro)alkyl BCP-aryls at low temperatures and fast reaction times enabled by an iron-catalyzed multicomponent radical cross-coupling reaction from readily available (fluoro)alkyl halides, [1.1.1]propellane, and Grignard reagents. Further, experimental and computational mechanistic studies provide insights into the mechanism and ligand effects on the nature of C-C bond formation. Finally, these studies are used to develop a method to rapidly access synthetic versatile (difluoro)alkyl BCP halides via bisphosphine-iron catalysis.
Keywords: cross-couplings; dicarbofunctionalization; iron; multicomponent; sustainable catalysis.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).Top Curr Chem (Cham). 2025 Jan 18;383(1):6. doi: 10.1007/s41061-025-00490-3. Top Curr Chem (Cham). 2025. PMID: 39826019 Review.
-
A General and Practical Route to Functionalized Bicyclo[1.1.1]Pentane-Heteroaryls Enabled by Photocatalytic Multicomponent Heteroarylation of [1.1.1]Propellane.Angew Chem Int Ed Engl. 2023 Jun 12;62(24):e202302223. doi: 10.1002/anie.202302223. Epub 2023 May 4. Angew Chem Int Ed Engl. 2023. PMID: 37059692 Free PMC article.
-
Dicarbofunctionalization of [1.1.1]Propellane Enabled by Nickel/Photoredox Dual Catalysis: One-Step Multicomponent Strategy for the Synthesis of BCP-Aryl Derivatives.J Am Chem Soc. 2022 Jul 20;144(28):12961-12969. doi: 10.1021/jacs.2c05304. Epub 2022 Jul 6. J Am Chem Soc. 2022. PMID: 35793500
-
One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredox-catalyzed [1.1.1]propellane multicomponent dicarbofunctionalization.Chem Sci. 2022 Oct 3;13(40):11936-11942. doi: 10.1039/d2sc05100a. eCollection 2022 Oct 19. Chem Sci. 2022. PMID: 36320918 Free PMC article.
-
Iron-Catalyzed C-C Cross-Couplings Using Organometallics.Top Curr Chem (Cham). 2016 Aug;374(4):49. doi: 10.1007/s41061-016-0047-x. Epub 2016 Jul 20. Top Curr Chem (Cham). 2016. PMID: 27573401 Review.
Cited by
-
Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations.Nat Synth. 2024;3(12):1538-1549. doi: 10.1038/s44160-024-00637-y. Epub 2024 Sep 5. Nat Synth. 2024. PMID: 39664797 Free PMC article.
-
α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source.ChemistryOpen. 2024 Oct;13(10):e202400108. doi: 10.1002/open.202400108. Epub 2024 Jul 11. ChemistryOpen. 2024. PMID: 38989712 Free PMC article. Review.
-
Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).Top Curr Chem (Cham). 2025 Jan 18;383(1):6. doi: 10.1007/s41061-025-00490-3. Top Curr Chem (Cham). 2025. PMID: 39826019 Review.
References
-
- Mykhailiuk PK Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem 2019, 17, 2839–2849. - PubMed
- Locke GM; Bernhard SSR; Senge MO Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chem. − Eur. J 2019, 25, 4590–4647. - PubMed
-
- Pellicciari R; Raimondo M; Marinozzi M; Natalini B; Costantino G; Thomsen C (S)-(+)-2-(3′-Carboxybicyclo[1.1.1]pentyl)-glycine, a Structurally New Group I Metabotropic Glutamate Receptor Antagonist. J. Med. Chem 1996, 39, 2874–2876. - PubMed
- Stepan AF; Subramanyam C; Efremov IV; Dutra JK; O’Sullivan TJ; DiRico KJ; McDonald WS; Won A; Dorff PH; Nolan CE; Becker SL; Pustilnik LR; Riddell DR; Kauffman GW; Kormos BL; Zhang L; Lu Y; Capetta SH; Green ME; Karki K; Sibley E; Atchison KP; Hallgren AJ; Oborski CE; Robshaw AE; Sneed B; O’Donnell CJ Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor. J. Med. Chem 2012, 55, 3414–3424. - PubMed
- Westphal MV; Wolfstaedter BT; Plancher J; Gatfield J; Carreira EM Evaluation of tert-Butyl isosteres: case studies of physicochemical and pharmacokinetic properties, efficacies, and activities. ChemMedChem 2015, 10, 461–469. - PubMed
- Costantino G; Maltoni K; Marinozzi M; Camaioni E; Prezeau L; Pin J-P; Pellicciari R Synthesis and biological evaluation of 2-(3′-(1H-tetrazol-5-yl)bicyclo[1.1.1]pent1yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist. Bioorg. Med. Chem 2001, 9, 221–227. - PubMed
- Filosa R; Carmela Fulco M; Marinozzi M; Giacche N; Macchiarulo A; Peduto A; Massa A; de Caprariis P; Thomsen C; Christoffersen CT; Pellicciari R Design, synthesis and biological evaluation of novel bicyclo[1.1.1]pentane-based ω-acidic amino acids as glutamate receptors ligands. Bioorg. Med. Chem 2009, 17, 242–250. - PubMed
- Nicolaou KC; Vourloumis D; Totokotsopoulos S; Papakyriakou A; Karsunky H; Fernando H; Gavrilyuk J; Webb D; Stepan AF Synthesis and Biopharmaceutical Evaluation of Imatinib Analogues Featuring Unusual Structural Motifs. ChemMedChem 2016, 11, 31–37. - PubMed
- Nicolaou KC; Yin J; Mandal D; Erande RD; Klahn P; Jin M; Aujay M; Sandoval J; Gavrilyuk J; Vourloumis D Total Synthesis and Biological Evaluation of Natural and Designed Tubulysins. J. Am. Chem. Soc 2016, 138, 1698–1708. - PubMed
- Measom ND; Down KD; Hirst DJ; Jamieson C; Manas ES; Patel VK; Somers DO Investigation of a Bicyclo[1.1.1]pentane as a Phenyl Replacement within an LpPLA2 Inhibitor. ACS Med. Chem. Lett 2017, 8, 43–48. - PMC - PubMed
- Goh YL; Cui YT; Pendharkar V; Adsool VA Toward Resolving the Resveratrol Conundrum: Synthesis and in Vivo Pharmacokinetic Evaluation of BCP-Resveratrol. ACS Med. Chem. Lett 2017, 8, 516–520. - PMC - PubMed
- Auberson YP; Brocklehurst C; Furegati M; Fessard TC; Koch G; Decker A; La Vecchia L; Briard E Improving Nonspecific Binding and Solubility: Bicycloalkyl Groups and Cubanes as para-Phenyl Bioisosteres. ChemMedChem 2017, 12, 590–598. - PubMed
- Wiberg KB; Waddell ST Reactions of [1.1.1]propellane. J. Am. Chem. Soc 1990, 112, 2194–2216.
- Ma X; Nhat Pham L Selective topics in the syntheses of bicyclo[1.1.1]pentane (BCP) analogues. Asian J. Org. Chem 2020, 9, 8–22.
- Kanazawa J; Uchiyama M Recent Advances in the Synthetic Chemistry of Bicyclo[1.1.1]pentane. Synlett 2019, 30, 1–11.
- Wiberg KB Small ring propellanes. Chem. Rev 1989, 89, 975–983.
- Dilmaç AM; Spuling E; de Meijere A; Brase S Propellanes- From a Chemical Curiosity to “Explosive” Materials and Natural Products. Angew. Chem., Int. Ed 2017, 56, 5684–5718. - PubMed
- Levin MD; Kaszynski P; Michl J Bicyclo[1.1.1]pentanes, [n]Staffanes, [1.1.1]Propellanes, and Tricyclo[2.1.0.0(2,5)]pentanes. Chem. Rev 2000, 100, 169–234. - PubMed
- Delia EW; Lochert IJ Synthesis of bridgehead-substituted bicyclo[1.1.1]pentanes. A review. Org. Prep. Proc. Int 1996, 28, 411–441.
-
- Rehm JDD; Ziemer B; Szeimies G A Facile Route to Bridgehead Disubstituted Bicyclo[1.1.1]pentanes Involving Palladium-Catalyzed Cross-Coupling Reactions. Eur. J. Org. Chem 1999, 1999, 2079–2085.
-
- Messner M; Kozhushkov SI; de Meijere A Nickel- and Palladium-Catalyzed Cross-Coupling Reactions at the Bridgehead of Bicyclo[1.1.1]pentane Derivatives- A Convenient Access to Liquid Crystalline Compounds Containing Bicyclo[1.1.1]pentane Moieties. Eur. J. Org. Chem 2000, 2000, 1137–1155.
-
- Makarov IS; Brocklehurst CE; Karaghiosoff K; Koch G; Knochel P Synthesis of Bicyclo[1.1.1]pentane Bioisosteres of Internal Alkynes and para-Disubstituted Benzenes from [1.1.1]Propellane. Angew. Chem., Int. Ed 2017, 56, 12774–12777. - PubMed
- Schwärzer K; Zipse H; Karaghiosoff K; Knochel P Highly Regioselective Addition ofAllylic Zinc Halides andVarious Zinc Enolates to [1.1.1]Propellane. Angew. Chem., Int. Ed 2020, 59, 20235–20241. - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources