Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec;238(11-12):1031-1051.
doi: 10.1177/09544119241289504. Epub 2024 Nov 11.

Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review

Affiliations
Review

Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review

Hurieh Mohammadzadeh et al. Proc Inst Mech Eng H. 2024 Dec.

Abstract

Repair and regeneration of damaged tissues due to disease and accidents have become a severe challenge to tissue engineers and researchers. In recent years, biocompatible metal materials such as stainless steels, cobalt alloys, titanium alloys, tantalum alloys, nitinol, and Mg alloys have been studied for tissue engineering applications; as suitable candidates in orthopedic and dentistry implants. These materials and their alloys are used for load-bearing and physiological roles in biological applications. Due to the suitable conditions provided by a porous material, many studies have been performed on the porous implants, including Mg-based scaffolds. Mg alloy scaffolds are attractive due to some outstanding features and susceptibilities, such as providing a cell matrix for cell proliferation, migration, and regeneration, providing metabolic substances for bone tissue growth, biocompatibility, good biodegradability, elastic modulus comparable to the natural bone, etc. Accordingly, in the present study, a general classification of all the production methods of Mg-based scaffolds is provided. Strengths and weaknesses, the effect of the production approach on the final properties of scaffolds, including mechanical and biological capabilities, and the impact of alloying elements and process parameters have been reviewed, and discussed. Finally, the manufacturing methods have been compared and the upcoming challenges have been stated.

Keywords: Mg scaffold; Tissue engineering; biological properties; manufacturing; mechanical properties.

PubMed Disclaimer

Conflict of interest statement

Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

LinkOut - more resources