Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 21;128(46):11417-11425.
doi: 10.1021/acs.jpcb.4c04701. Epub 2024 Nov 12.

1H and 13C NMR and FTIR Spectroscopic Analysis of Formic Acid Dissociation Dynamics in Water

Affiliations

1H and 13C NMR and FTIR Spectroscopic Analysis of Formic Acid Dissociation Dynamics in Water

Ahmad Telfah et al. J Phys Chem B. .

Abstract

The formation and transport of ionic charges in formic acid-water (HCOOH-H2O) mixtures with initial water mole fractions ranging from XH2Oi = 0 to 1 were investigated using 13C and 1H NMR, FTIR spectroscopy, viscosity, conductivity, and pH measurements. The maximum molar concentration of ions (H3O+ and HCOO-), along with the relative differences between theoretical and experimental densities, spin-lattice relaxation times (T1), activation energies (Ea), viscosity (η), and conductivity (σ), were identified within the range of XH2Oi ≈ 0.5-0.7. These results indicate that pure formic acid (FA) solutions predominantly consist of cyclic dimers at room temperature. As the water mole fraction increases up to 0.6, a structural shift occurs from cyclic dimers to a mixture of linear and cyclic dimers, driven by the formation of strong hydrogen bonds. Beyond a water mole fraction of 0.6, the structure transitions to linear dimers, with FA molecules behaving as free entities in the water. Furthermore, the acidity was found to increase approximately 2-fold with every 0.1 increment in water mole fraction. These findings are critical for understanding the kinetics of formic acid anions in body fluids, the structure of the hydrogen bonding network, and ionization energies.

PubMed Disclaimer

LinkOut - more resources