Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety
- PMID: 39531800
- DOI: 10.1016/j.bios.2024.116920
Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety
Abstract
As a classical and continuously developing on-site sensor, Lateral flow immunoassay (LFIA) exhibits promising potential for advanced point-of-care testing (POCT). Especially given the significance of agri-food in human dietary structure and the ever-increasing agri-food safety concerns, improved analysis performance of LFIA is urgently required. Recently, flourishing enhancement-type signal tracers (STs) and brilliant enhancement-type analysis strategies have been actively pursued in the development of LFIA because these patterns endow immense feasibility in manufacturing target-oriented sensing platforms. To facilitate further advancements in this field, this review comprehensively examines the recent developments in enhancement-type STs (e.g., load-, green-, recognizable-, Janus-, and dyestuffs-type STs) and enhancement-type analysis strategies (e.g. immuno-network, in-situ growth, nanozymes, multi-signal readout, and software-assisted quantitative analytical strategies) that significantly improve precise analysis efficiency. Moreover, by conducting a comprehensive evaluation of the major advancements and aiming to identify future trends in LFIA-based sensor, the objective of this review is to provide recommendations for future research based on the challenges and opportunities of LFIA.
Keywords: Agri-food safety; Analysis strategy; Enhancement-type; Lateral flow immunoassay; Nanomaterials; Practicability; Sensitivity; Signal tracers.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials