Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages
- PMID: 39532995
- PMCID: PMC11557866
- DOI: 10.1038/s42003-024-07130-4
Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages
Abstract
The generation of a self-formed, ectodermal, autonomous multi-zone (SEAM) from human induced pluripotent stem cells (hiPSCs) offers a unique perspective to study the dynamics of ocular cell differentiation over time. Here, by utilising single-cell transcriptomics, we have (i) identified, (ii) molecularly characterised and (iii) ascertained the developmental trajectories of ectodermally-derived ocular cell populations which emerge within SEAMs as they form. Our analysis reveals interdependency between tissues of the early eye and delineates the sequential formation and maturation of distinct cell types over a 12-week period. We demonstrate a progression from pluripotency through to tissue specification and differentiation which encompasses both surface ectodermal and neuroectodermal ocular lineages and the generation of iPSC-derived components of the developing cornea, conjunctiva, lens, and retina. Our findings not only advance the understanding of ocular development in a stem cell-based system of human origin, but also establish a robust methodological paradigm for exploring cellular and molecular dynamics during SEAM formation at single-cell resolution and highlight the potential of hiPSC-derived systems as powerful platforms for modelling human eye development and disease.
© 2024. The Author(s).
Conflict of interest statement
Figures
References
-
- Hayashi, R. et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature531, 376–380 (2016). - PubMed
-
- Hayashi, R. et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat. Protoc.12, 683–696 (2017). - PubMed
-
- Gehring, W. J. The master control gene for morphogenesis and evolution of the eye. Genes Cells1, 11–15 (1996). - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
