Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 26;96(47):18605-18614.
doi: 10.1021/acs.analchem.4c00906. Epub 2024 Nov 13.

A Free-Standing Boron-Doped Diamond Grid Electrode for Fundamental Spectroelectrochemistry

Affiliations

A Free-Standing Boron-Doped Diamond Grid Electrode for Fundamental Spectroelectrochemistry

Hannah K Patenaude et al. Anal Chem. .

Abstract

Spectroelectrochemistry (SEC) is a powerful technique that enables a variety of redox properties to be studied, including formal potential (Eo), thermodynamic values (ΔG, ΔH, ΔS), diffusion coefficient (D), electron transfer stoichiometry (n), and others. SEC requires an electrode which light can pass through while maintaining sufficient electrical conductivity. This has been traditionally composed of metal or metal oxide films atop transparent substrates like glass, quartz, or metallic mesh. Robust electrode materials like boron-doped diamond (BDD) could help expand the environments in which SEC can be performed, but most designs are limited to thin films (∼100-200 nm) on transparent substrates less resilient than free-standing BDD. This work presents a free-standing BDD grid electrode (G-BDD) for fundamental SEC measurements, using the well-characterized Fe(CN)63-/4- redox couple as proof-of-concept. With a combination of cyclic voltammetry (CV), thin-layer SEC, and chronoabsorptometry, several of the redox properties mentioned above were calculated and compared. For Eo', n, and D, similar results were obtained when comparing the CV [Eo' = +0.279 (±0.002) V vs Ag/AgCl; n = 0.97; D = 4.1 × 10-6 cm2·s-1] and SEC [Eo' = +0.278 (±0.001) V vs Ag/AgCl; n = 0.91; D = 5.2 × 10-6 cm2·s-1] techniques. Both values align with what has been previously reported. To calculate D from the SEC data, modification of the classical equation used in chronoabsorptometry was required to accommodate the G-BDD electrode geometry. Overall, this work expands on the applicability of SEC techniques and BDD as a versatile electrode material.

PubMed Disclaimer

LinkOut - more resources