Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2024 Nov 7;30(41):4503-4508.
doi: 10.3748/wjg.v30.i41.4503.

MicroRNA-206 as a promising epigenetic approach to modulate tumor-associated macrophages in hepatocellular carcinoma

Affiliations
Editorial

MicroRNA-206 as a promising epigenetic approach to modulate tumor-associated macrophages in hepatocellular carcinoma

Davide Ramoni et al. World J Gastroenterol. .

Abstract

This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology, which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma (HCC) tumor microenvironments (TME) by inhibiting M2-tumor-associated macrophage (M2-TAM) polarization via Wnt/β-catenin pathway modulation. Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression. Epigenetic regulation, particularly through microRNAs (miR), has emerged as a key factor in modulating immune responses and TAM polarization in the TME, influencing treatment responses and tumor progression. This editorial focuses on miR-206, which has been found to inhibit HCC cell proliferation and migration and promote apoptosis. Moreover, miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells, facilitating CD8+ T cell recruitment and suppressing liver cancer stem cell expansion. However, challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent. Targeting epigenetic mechanisms and improving strategies, whether through pharmacological or genetic approaches, offer promising avenues to sensitize tumor cells to chemotherapy. Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies, potentially improving HCC prognosis.

Keywords: Epigenetic regulation; Hepatocellular carcinoma; MicroRNA-206; Non-coding RNAs; Tumor microenvironment; Tumor-associated macrophages.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Similar articles

Cited by

References

    1. Huang Z, Meng FY, Lu LZ, Guo QQ, Lv CJ, Tan NH, Deng Z, Chen JY, Zhang ZS, Zou B, Long HP, Zhou Q, Tian S, Mei S, Tian XF. Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer. World J Gastroenterol. 2024;30:3511–3533. - PMC - PubMed
    1. Massarweh NN, El-Serag HB. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control. 2017;24:1073274817729245. - PMC - PubMed
    1. Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC, Qin HY. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9:793. - PMC - PubMed
    1. Wang Y, Tai Q, Zhang J, Kang J, Gao F, Zhong F, Cai L, Fang F, Gao Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim Biophys Sin (Shanghai) 2019;51:243–253. - PubMed
    1. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62. - PMC - PubMed

Publication types

MeSH terms