Molecular Characterization and Photoreactivity of Organic Aerosols Formed from Pyrolysis of Urban Materials during Fires at the Wildland-Urban Interface
- PMID: 39539461
- PMCID: PMC11555641
- DOI: 10.1021/acsestair.4c00215
Molecular Characterization and Photoreactivity of Organic Aerosols Formed from Pyrolysis of Urban Materials during Fires at the Wildland-Urban Interface
Abstract
Fires at the wildland-urban interface (WUI) are increasing in magnitude and frequency, emitting organic aerosol (OA) with unknown composition and atmospheric impacts. In this study, we investigated the chemical composition of OA produced through the 600 °C pyrolysis of ten urban materials in nitrogen, which were subsequently aged under UV light for 2 h. The analysis utilized ultrahigh-performance liquid chromatography (UHPLC) separation, coupled with a photodiode array (PDA) detector and a high-resolution mass spectrometer (HRMS) for molecular characterization. Hierarchical clustering analysis demonstrated that lumber-derived OA was the most diverse and distinct in composition. Unaged and aged OA (for each urban material) did not significantly differ in chemical identities. Potential aromatic brown carbon (BrC) chromophores (based on their degree of unsaturation) constituted 13-42% of all assigned compounds. PDA chromatograms revealed multiple BrC chromophoric species that were either enhanced or degraded as a result of UV aging, providing insights into specific BrC chromophores responsible for photobleaching and photoenhancement of the overall absorption coefficient. Thirty-six BrC chromophores were identified across the ten OA types, and their structures were confirmed using reference standards. Components of plasticizers and resins, such as phthalic and terephthalic acids, were structurally confirmed in the samples. We present potential species for WUI fires as components of resins, epoxies, dyes, and adhesives commonly used in manufacturing urban materials. Photolysis did not significantly impact the chemical composition of OA emitted from the burning of specific WUI materials.
© 2024 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Antiretrovirals for reducing the risk of mother-to-child transmission of HIV infection.Cochrane Database Syst Rev. 2011 Jul 6;(7):CD003510. doi: 10.1002/14651858.CD003510.pub3. Cochrane Database Syst Rev. 2011. PMID: 21735394
-
Antiretrovirals for reducing the risk of mother-to-child transmission of HIV infection.Cochrane Database Syst Rev. 2007 Jan 24;(1):CD003510. doi: 10.1002/14651858.CD003510.pub2. Cochrane Database Syst Rev. 2007. Update in: Cochrane Database Syst Rev. 2011 Jul 06;(7):CD003510. doi: 10.1002/14651858.CD003510.pub3. PMID: 17253490 Updated.
-
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780. Cochrane Database Syst Rev. 2024. PMID: 39679851 Free PMC article.
-
Incentives for preventing smoking in children and adolescents.Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3. Cochrane Database Syst Rev. 2017. PMID: 28585288 Free PMC article.
-
Interventions for preventing and reducing the use of physical restraints for older people in all long-term care settings.Cochrane Database Syst Rev. 2023 Jul 28;7(7):CD007546. doi: 10.1002/14651858.CD007546.pub3. Cochrane Database Syst Rev. 2023. PMID: 37500094 Free PMC article.
References
-
- Shuman J. K.; Balch J. K.; Barnes R. T.; Higuera P. E.; Roos C. I.; Schwilk D. W.; Stavros E. N.; Banerjee T.; Bela M. M.; Bendix J.; Bertolino S.; Bililign S.; Bladon K. D.; Brando P.; Breidenthal R. E.; Buma B.; Calhoun D.; Carvalho L. M. V.; Cattau M. E.; Cawley K. M.; Chandra S.; Chipman M. L.; Cobian-Iñiguez J.; Conlisk E.; Coop J. D.; Cullen A.; Davis K. T.; Dayalu A.; De Sales F.; Dolman M.; Ellsworth L. M.; Franklin S.; Guiterman C. H.; Hamilton M.; Hanan E. J.; Hansen W. D.; Hantson S.; Harvey B. J.; Holz A.; Huang T.; Hurteau M. D.; Ilangakoon N. T.; Jennings M.; Jones C.; Klimaszewski-Patterson A.; Kobziar L. N.; Kominoski J.; Kosovic B.; Krawchuk M. A.; Laris P.; Leonard J.; Loria-Salazar S. M.; Lucash M.; Mahmoud H.; Margolis E.; Maxwell T.; McCarty J. L.; McWethy D. B.; Meyer R. S.; Miesel J. R.; Moser W. K.; Nagy R. C.; Niyogi D.; Palmer H. M.; Pellegrini A.; Poulter B.; Robertson K.; Rocha A. V.; Sadegh M.; Santos F.; Scordo F.; Sexton J. O.; Sharma A. S.; Smith A. M. S.; Soja A. J.; Still C.; Swetnam T.; Syphard A. D.; Tingley M. W.; Tohidi A.; Trugman A. T.; Turetsky M.; Varner J. M.; Wang Y.; Whitman T.; Yelenik S.; Zhang X. Reimagine Fire Science for the Anthropocene. PNAS Nexus 2022, 1 (3), pgac11510.1093/pnasnexus/pgac115. - DOI - PMC - PubMed
-
- Radeloff V. C.; Helmers D. P.; Kramer H. A.; Mockrin M. H.; Alexandre P. M.; Bar-Massada A.; Butsic V.; Hawbaker T. J.; Martinuzzi S.; Syphard A. D.; Stewart S. I. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (13), 3314–3319. 10.1073/pnas.1718850115. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources