Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Oct 30:6:1484818.
doi: 10.3389/fdgth.2024.1484818. eCollection 2024.

Workshop summaries from the 2024 voice AI symposium, presented by the Bridge2AI-voice consortium

Collaborators, Affiliations
Review

Workshop summaries from the 2024 voice AI symposium, presented by the Bridge2AI-voice consortium

Ruth Bahr et al. Front Digit Health. .

Abstract

Introduction: The 2024 Voice AI Symposium, presented by the Bridge2AI-Voice Consortium, featured deep-dive educational workshops conducted by experts from diverse fields to explore the latest advancements in voice biomarkers and artificial intelligence (AI) applications in healthcare. Through five workshops, attendees learned about topics including international standardization of vocal biomarker data, real-world deployment of AI solutions, assistive technologies for voice disorders, best practices for voice data collection, and deep learning applications in voice analysis. These workshops aimed to foster collaboration between academia, industry, and healthcare to advance the development and implementation of voice-based AI tools.

Methods: Each workshop featured a combination of lectures, case studies, and interactive discussions. Transcripts of audio recordings were generated using Whisper (Version 7.13.1) and summarized by ChatGPT (Version 4.0), then reviewed by the authors. The workshops covered various methodologies, from signal processing and machine learning operations (MLOps) to ethical concerns surrounding AI-powered voice data collection. Practical demonstrations of AI-driven tools for voice disorder management and technical discussions on implementing voice AI models in clinical and non-clinical settings provided attendees with hands-on experience.

Results: Key outcomes included the discussion of international standards to unify stakeholders in vocal biomarker research, practical challenges in deploying AI solutions outside the laboratory, review of Bridge2AI-Voice data collection processes, and the potential of AI to empower individuals with voice disorders. Additionally, presenters shared innovations in ethical AI practices, scalable machine learning frameworks, and advanced data collection techniques using diverse voice datasets. The symposium highlighted the successful integration of AI in detecting and analyzing voice signals for various health applications, with significant advancements in standardization, privacy, and clinical validation processes.

Discussion: The symposium underscored the importance of interdisciplinary collaboration to address the technical, ethical, and clinical challenges in the field of voice biomarkers. While AI models have shown promise in analyzing voice data, challenges such as data variability, security, and scalability remain. Future efforts must focus on refining data collection standards, advancing ethical AI practices, and ensuring diverse dataset inclusion to improve model robustness. By fostering collaboration among researchers, clinicians, and technologists, the symposium laid a foundation for future innovations in AI-driven voice analysis for healthcare diagnostics and treatment.

Keywords: Bridge2AI; Bridge2AI-Voice; artificial intelligence; artificial intelligence—AI; audiomics; ethical AI; voice biomarker; voice biomarkers.

PubMed Disclaimer

Conflict of interest statement

Several educational workshops were conducted by event sponsors. Sponsored workshops were reviewed by the Symposium Planning Committee prior to acceptance to ensure content met high educational and scientific standards. The following authors were representing their institutions and companies as event sponsors: Nate Blaylock for Canary Speech, Joris Castermans and Akash Raj Komarlu for Whispp, Keith Comito and Greg Hale for ASTM and Walt Disney World Parks and Resorts, and Kimberly Kuman and Charlie Reavis for Dysphonia International. Bridge2AI-Voice is the Precision Public Health Grand Challenge of the Bridge2AI Program, funded by the NIH Common Fund, grant number OT2OD032720-01. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

LinkOut - more resources