Spectrin, human erythrocyte shapes, and mechanochemical properties
- PMID: 3955175
- PMCID: PMC1329641
- DOI: 10.1016/S0006-3495(86)83644-X
Spectrin, human erythrocyte shapes, and mechanochemical properties
Abstract
Physical studies of human erythrocyte spectrin indicate that isolated spectrin dimers and tetramers in solution are worm-like coils with a persistence length of approximately 20 nm. This finding, the known polyelectrolytic nature of spectrin, and other structural information about spectrin and the membrane skeleton molecular organization have lead us to the hypothesis that the human erythrocyte membrane skeleton constitutes a two-dimensional ionic gel (swollen ionic elastomer). This concept is incorporated in what we refer to as the protein gel-lipid bilayer membrane model. The model accounts quantitatively for red elastic shear modulus and the maximum elastic extension ratio reported for the human erythrocytes membrane. Gel theory further predicts that depending on the environmental conditions, the membrane skeleton modulus of area compression may be small or large relative to the membrane elastic shear modulus. Our analyses show that the ratio between these two parameters affects both the geometry and the stability of the favored cell shapes and that the higher the membrane skeleton compressibility the smaller the values of the gel tension needed to induce cell shape transformations. The main virtue of the protein gel-lipid bilayer membrane model is that it offers a novel theoretical and molecular basis for the various mechanical properties of the membrane skeleton such as the membrane skeleton modulus of area compression and osmotic tension, and the effects of these properties on local membrane skeleton density, cell shape, and shape transformations.
Similar articles
-
The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties.Eur Biophys J. 1986;13(4):203-18. doi: 10.1007/BF00260368. Eur Biophys J. 1986. PMID: 3709419
-
The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations.Eur Biophys J. 1986;13(4):219-33. doi: 10.1007/BF00260369. Eur Biophys J. 1986. PMID: 3709420
-
The human erythrocyte membrane skeleton may be an ionic gel. III. Micropipette aspiration of unswollen erythrocytes.J Theor Biol. 1986 Nov 21;123(2):205-11. doi: 10.1016/s0022-5193(86)80154-0. J Theor Biol. 1986. PMID: 3626588
-
[Elasticity of the erythrocyte membrane: overview and attempted explanation based on recent data on the ultrastructure of the membrane skeleton].Gegenbaurs Morphol Jahrb. 1983;129(3):287-98. Gegenbaurs Morphol Jahrb. 1983. PMID: 6350099 Review. German.
-
[Molecular interactions of membrane proteins and erythrocyte deformability].Pathol Biol (Paris). 1984 Jun;32(6):717-35. Pathol Biol (Paris). 1984. PMID: 6235477 Review. French.
Cited by
-
Voltage-Driven Alterations to Neuron Viscoelasticity.Bioelectricity. 2022 Mar 15;4(1):31-38. doi: 10.1089/bioe.2021.0028. eCollection 2022 Mar. Bioelectricity. 2022. PMID: 39372227 Free PMC article.
-
A particle-based computational model to analyse remodelling of the red blood cell cytoskeleton during malaria infections.PLoS Comput Biol. 2022 Apr 8;18(4):e1009509. doi: 10.1371/journal.pcbi.1009509. eCollection 2022 Apr. PLoS Comput Biol. 2022. PMID: 35394995 Free PMC article.
-
Elastic thickness compressibilty of the red cell membrane.Biophys J. 2001 Sep;81(3):1452-63. doi: 10.1016/S0006-3495(01)75800-6. Biophys J. 2001. PMID: 11509359 Free PMC article.
-
The axonal actin-spectrin lattice acts as a tension buffering shock absorber.Elife. 2020 Apr 8;9:e51772. doi: 10.7554/eLife.51772. Elife. 2020. PMID: 32267230 Free PMC article.
-
Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo.Biophys Rev. 2019 Dec;11(6):1017-1035. doi: 10.1007/s12551-019-00601-7. Epub 2019 Nov 18. Biophys Rev. 2019. PMID: 31741172 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources