Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Dietary control of peripheral adipose storage capacity through membrane lipid remodelling

Marcus J Tol et al. bioRxiv. .

Update in

  • Dietary control of peripheral adipose storage capacity through membrane lipid remodelling.
    Tol MJ, Shimanaka Y, Bedard AH, Sapia J, Cui L, Colaço-Gaspar M, Hofer P, Ferrari A, Qian K, Kennelly JP, Lee SD, Gao Y, Xiao X, Gao J, Mack JJ, Weston TA, Williams KJ, Su B, Pan C, Lusis AJ, Pike DP, Reed A, Milosevich N, Cravatt BF, Arita M, Young SG, Ford DA, Zechner R, Vanni S, Tontonoz P. Tol MJ, et al. Nat Metab. 2025 Jul;7(7):1424-1442. doi: 10.1038/s42255-025-01320-y. Epub 2025 Jun 27. Nat Metab. 2025. PMID: 40579620

Abstract

Complex genetic and dietary cues contribute to the development of obesity, but how these are integrated on a molecular level is incompletely understood. Here, we show that PPARγ supports hypertrophic expansion of adipose tissue via transcriptional control of LPCAT3, a membrane-bound O-acyltransferase that enriches diet-derived omega-6 ( n -6) polyunsaturated fatty acids (PUFAs) in the phospholipidome. In high-fat diet-fed mice, lowering membrane n -6 PUFA levels by adipocyte-specific Lpcat3 knockout ( Lpcat3 AKO ) or by dietary lipid manipulation leads to dysfunctional triglyceride (TG) storage, ectopic fat deposition and insulin resistance. Aberrant lipolysis of stored TGs in Lpcat3 AKO adipose tissues instigates a non-canonical adaptive response that engages a futile lipid cycle to increase energy expenditure and limit further body weight gain. Mechanistically, we find that adipocyte LPCAT3 activity promotes TG storage by selectively enriching n -6 arachidonoyl-phosphatidylethanolamine at the ER-lipid droplet interface, which in turn favours the budding of large droplets that exhibit greater resistance to ATGL-dependent hydrolysis. Thus, our study highlights the PPARγ-LPCAT3 pathway as a molecular link between dietary n -6 PUFA intake, adipose expandability and systemic energy balance.

PubMed Disclaimer

Publication types

LinkOut - more resources