Rational design of lanosterol 14α-demethylase for ergosterol biosynthesis in Saccharomyces cerevisiae
- PMID: 39554987
- PMCID: PMC11564469
- DOI: 10.1007/s13205-024-04136-x
Rational design of lanosterol 14α-demethylase for ergosterol biosynthesis in Saccharomyces cerevisiae
Abstract
Ergosterol is widely used in skin care products and drug preparation. Lanosterol 14α-demethylase (Erg11p, 14DM, CYP51) is the rate-limiting enzyme for the biosynthesis of various steroid compounds in Saccharomyces cerevisiae. Herein, Erg11p was engineered to extend the in vivo catalytic half-life and increase the turnover rate. Single mutations resulting in lower folding energy were selected, and mutant P201H had an ergosterol yield of 576.9 mg·L-1. Through consensus design, single mutations resulting in higher sequence identity to homologs were tested and mutant K352L had an ergosterol yield of 677.9 mg·L-1. The key residues for substrate binding were confirmed via alanine scanning mutagenesis and mutant F384A had an ergosterol yield of 657.8 mg·L-1. Molecular dynamics (MD) simulation was conducted to investigate the contributions of pocket residues and eight residues were found to engage in weak interactions with lanosterol. Saturation mutagenesis was applied to these residues to enhance binding to lanosterol, and mutant F384E had an ergosterol yield of 733.8 mg·L-1. Meanwhile, MD simulations were conducted to assess the impact of mutant F384E on enzyme activity. The results consistently showed that single point mutation F384E had the greatest effect, outperforming the combination mutations. Batch fermentation increased the ergosterol yield of mutant F384E to 3067.5 mg·L-1, the highest reported to date. The successful engineering of Erg11p may pave the way for industrial-scale production of ergosterol and other steroids.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04136-x.
Keywords: Cytochrome P450 (51); Enzyme engineering; Ergosterol; Rational design; Saccharomyces cerevisiae.
© King Abdulaziz City for Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestThe authors declare that they have no competing interests.
Similar articles
-
Pharmacotherapies for sleep disturbances in dementia.Cochrane Database Syst Rev. 2016 Nov 16;11(11):CD009178. doi: 10.1002/14651858.CD009178.pub3. Cochrane Database Syst Rev. 2016. Update in: Cochrane Database Syst Rev. 2020 Nov 15;11:CD009178. doi: 10.1002/14651858.CD009178.pub4. PMID: 27851868 Free PMC article. Updated.
-
Sertindole for schizophrenia.Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2. Cochrane Database Syst Rev. 2005. PMID: 16034864 Free PMC article.
-
Foetal haemoglobin inducers for reducing blood transfusion in non-transfusion-dependent beta-thalassaemias.Cochrane Database Syst Rev. 2023 Jan 13;1(1):CD013767. doi: 10.1002/14651858.CD013767.pub2. Cochrane Database Syst Rev. 2023. PMID: 36637054 Free PMC article.
-
Interventions for tophi in gout.Cochrane Database Syst Rev. 2021 Aug 11;8(8):CD010069. doi: 10.1002/14651858.CD010069.pub3. Cochrane Database Syst Rev. 2021. PMID: 34379791 Free PMC article.
-
Donepezil for dementia due to Alzheimer's disease.Cochrane Database Syst Rev. 2018 Jun 18;6(6):CD001190. doi: 10.1002/14651858.CD001190.pub3. Cochrane Database Syst Rev. 2018. PMID: 29923184 Free PMC article.
References
-
- Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M (2019) Yeast expression systems: overview and recent advances. Mol Biotechnol 61(5):365–384. 10.1007/s12033-019-00164-8 - PubMed
-
- Coskuner-Weber O, Uversky VN (2019) Alanine scanning effects on the biochemical and biophysical properties of intrinsically disordered proteins: a case study of the histidine to alanine mutations in amyloid-β42. J Chem Inf Model 59(2):871–884. 10.1021/acs.jcim.8b00926 - PubMed
LinkOut - more resources
Full Text Sources