Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 27;146(47):32311-32316.
doi: 10.1021/jacs.4c14509. Epub 2024 Nov 18.

Template and Solid-State-Assisted Assembly of an M9L6 Expanded Coordination Cage for Medium-Sized Molecule Encapsulation

Affiliations

Template and Solid-State-Assisted Assembly of an M9L6 Expanded Coordination Cage for Medium-Sized Molecule Encapsulation

Kenta Iizuka et al. J Am Chem Soc. .

Abstract

The M6L4 cage, self-assembling from six Pd(II) or Pt(II) 90-degree blocks and four triazine-cored triangular ligands, has an effective hydrophobic cavity of about 450 Å3 capable of encapsulating one or more small molecules. Here, from the same components, we successfully constructed an M9L6 cage with an internal volume expanded to 1540 Å3 via the self-assembly of an M8L6 precursor using pillar[5]arene as a template. This cage retains the high molecular recognition ability of the M6L4 cage while recognizing medium-sized guest molecules with molecular weights of up to ∼1600.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Schematic representation of the concept: cavity expansion of M6L4 cage 1 into M9L6 cage 2.
Figure 2
Figure 2
(a) Synthetic scheme of M9L6 cage 2 through M8L6 cage 3 (see the text for the conditions). (b) Crystal structure of 3·4 (H atoms on the cage, counteranions, capping ligands on Pt atoms, and solvent molecules are omitted for clarity).
Figure 3
Figure 3
1H NMR spectrum (300 K, 600 MHz, D2O) of (a) inclusion complex 3·4, (b) empty 3, and (c) 2 (*, residual solvents). The host symmetry changes from C1 (in 3·4) to C2v (in 3) to D3h (in 2).
Figure 4
Figure 4
Crystal structures of inclusion complexes (a) 2·(6)6 (6: 1,3,5-trimethoxybenzene) and (b) 2·(7)3 (7: calix[4]arene). In (a) and (b), the side and top views of D3h symmetric host framework 2 are displayed, respectively. H atoms on the cage, counteranions, capping ligands on Pt atoms, and solvent molecules are omitted for clarity.
Figure 5
Figure 5
(a) Structures of target medium-sized molecules: rifampicin (8) and daptomycin (9). 1H NMR spectra (300 K, 600 MHz, D2O) of (b) 8 and mixtures of 2 with (c) 0.7 equiv of 8 (exclusively forming 2·8), (d) 1.2 equiv of 8 [a mixture of 2·8 and 2·(8)2], and (e) 2.0 equiv of 8 [exclusively forming 2·(8)2].

References

    1. Pedersen C. J. Cyclic Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. 10.1021/ja01002a035. - DOI
    2. Cram D. J.; Cram J. M. Host-Guest Chemistry: Complexes between Organic Compounds Simulate the Substrate Selectivity of Enzymes. Science 1974, 183, 803–809. 10.1126/science.183.4127.803. - DOI - PubMed
    3. Cram D. J. Cavitands: Organic Hosts with Enforced Cavities. Science 1983, 219, 1177–1183. 10.1126/science.219.4589.1177. - DOI - PubMed
    4. Cram D. J. Molecular Container Compounds. Nature 1992, 356, 29–36. 10.1038/356029a0. - DOI
    5. Böhmer V. Calixarenes, Macrocycles with (Almost) Unlimited Possibilities. Angew. Chem., Int. Ed. Engl. 1995, 34, 713–745. 10.1002/anie.199507131. - DOI
    6. Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. 10.1021/cr970022c. - DOI - PubMed
    7. Gokel G. W.; Leevy W. M.; Weber M. E. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev. 2004, 104, 2723–2750. 10.1021/cr020080k. - DOI - PubMed
    8. Menon S. K.; Hirpara S. V.; Harikrishnan U. Synthesis and Applications of Cryptands. Rev. Anal. Chem. 2004, 23, 233–267. 10.1515/REVAC.2004.23.4.233. - DOI
    9. Assaf K. I.; Nau W. M. Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chem. Soc. Rev. 2015, 44, 394–418. 10.1039/C4CS00273C. - DOI - PubMed
    1. Wyler R.; de Mendoza J.; Rebek J. A Synthetic Cavity Assembles Through Self-Complementary Hydrogen Bonds. Angew. Chem., Int. Ed. Engl. 1993, 32, 1699–1701. 10.1002/anie.199316991. - DOI
    2. Baxter P.; Lehn J.; DeCian A.; Fischer J. Multicomponent Self-Assembly: Spontaneous Formation of a Cylindrical Complex from Five Ligands and Six Metal Ions. Angew. Chem., Int. Ed. Engl. 1993, 32, 69–72. 10.1002/anie.199300691. - DOI
    3. Meissner R. S.; Rebek J.; de Mendoza J. Autoencapsulation Through Intermolecular Forces: A Synthetic Self-Assembling Spherical Complex. Science 1995, 270, 1485–1488. 10.1126/science.270.5241.1485. - DOI - PubMed
    4. MacGillivray L. R.; Atwood J. L. A Chiral Spherical Molecular Assembly Held Together by 60 Hydrogen Bonds. Nature 1997, 389, 469–472. 10.1038/38985. - DOI
    5. Heinz T.; Rudkevich D. M.; Rebek J. Pairwise Selection of Guests in a Cylindrical Molecular Capsule of Nanometre Dimensions. Nature 1998, 394, 764–766. 10.1038/29501. - DOI
    1. Fujita M.; Oguro D.; Miyazawa M.; Oka H.; Yamaguchi K.; Ogura K. Self-Assembly of Ten Molecules into Nanometre-Sized Organic Host Frameworks. Nature 1995, 378, 469–471. 10.1038/378469a0. - DOI
    2. Caulder D. L.; Powers R. E.; Parac T. N.; Raymond K. N. The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster. Angew. Chem., Int. Ed. 1998, 37, 1840–1843. 10.1002/(SICI)1521-3773(19980803)37:13/14<1840::AID-ANIE1840>3.0.CO;2-D. - DOI
    1. Conn M. M.; Rebek J. Self-Assembling Capsules. Chem. Rev. 1997, 97, 1647–1668. 10.1021/cr9603800. - DOI - PubMed
    2. Caulder D. L.; Raymond K. N. Supermolecules by Design. Acc. Chem. Res. 1999, 32, 975–982. 10.1021/ar970224v. - DOI
    3. Leininger S.; Olenyuk B.; Stang P. J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100, 853–908. 10.1021/cr9601324. - DOI - PubMed
    4. Fujita M.; Tominaga M.; Hori A.; Therrien B. Coordination Assemblies from a Pd(II)-Cornered Square Complex. Acc. Chem. Res. 2005, 38, 369–378. 10.1021/ar040153h. - DOI - PubMed
    1. Yoshizawa M.; Klosterman J. K.; Fujita M. Functional Molecular Flasks: New Properties and Reactions within Discrete. Self-Assembled Hosts. Angew. Chem. Int. Ed. 2009, 48, 3418–3438. 10.1002/anie.200805340. - DOI - PubMed
    2. Inokuma Y.; Kawano M.; Fujita M. Crystalline Molecular Flasks. Nat. Chem. 2011, 3, 349–358. 10.1038/nchem.1031. - DOI - PubMed
    3. Morimoto M.; Bierschenk S. M.; Xia K. T.; Bergman R. G.; Raymond K. N.; Toste F. D. Advances in Supramolecular Host-Mediated Reactivity. Nat. Catal. 2020, 3, 969–984. 10.1038/s41929-020-00528-3. - DOI
    4. Grommet A. B.; Feller M.; Klajn R. Chemical Reactivity under Nanoconfinement. Nat. Nanotechnol. 2020, 15, 256–271. 10.1038/s41565-020-0652-2. - DOI - PubMed
    5. Takezawa H.; Fujita M. Molecular Confinement Effects by Self-Assembled Coordination Cages. Bull. Chem. Soc. Jpn. 2021, 94, 2351–2369. 10.1246/bcsj.20210273. - DOI

LinkOut - more resources