Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb:(203):75-98.

An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Design and testing

  • PMID: 3956000

An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Design and testing

M H Krag et al. Clin Orthop Relat Res. 1986 Feb.

Abstract

A new spinal implant has been designed and biomechanical testing completed, intended for application to "short-segment" spinal defects such as disc degeneration, fracture, spondylolisthesis, or tumor. Major improvements over currently available devices include: only 2-3 vertebrae are spanned, not 5-7 as with Harrington rods; true three-dimensional fixation is achieved, preventing such problems as hook or rod dislocation; three-dimensional adjustment is easily accomplished, allowing fracture or spondylolisthesis reduction to be readily performed; attachment to vertebrae is by means of transpedicular screws eliminating deliberate encroachment into the spinal canal, such as Luque wires or Harrington hooks; no special alignment between screws is needed (such as with holes or slots in a plate), allowing screw placement to fully conform to anatomic structures; and laminectomy sites and lumbosacral junction are readily instrumented. Background investigations presented here for design of this device include: CT-defined pedicle morphometry showing that screws may be larger than those currently used; effect of pitch, minor diameter, and tooth profile on screw pull-out strength; mechanical testing of a compact, three-dimensionally adjustable, strong, nonloosening articulating clamp; and establishing of the relationship between depth of penetration and strength of fixation of transpeduncular screws.

PubMed Disclaimer

Publication types

LinkOut - more resources