Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 30;145(5):508-519.
doi: 10.1182/blood.2024025277.

Bivalent CD47 immunotoxin for targeted therapy of T-cell acute lymphoblastic leukemia

Affiliations
Free article

Bivalent CD47 immunotoxin for targeted therapy of T-cell acute lymphoblastic leukemia

Jihong Ma et al. Blood. .
Free article

Abstract

CD47 is overexpressed on the surface of many types of cancer cells, including T-cell acute lymphoblastic leukemia (T-ALL) cells. In this study, we have developed a diphtheria toxin (DT)-based bivalent anti-human CD47 immunotoxin (bi-CD47-IT) for the targeted therapy of CD47+ cancers using a unique DT-resistant yeast Pichia pastoris expression system. Bi-CD47-IT demonstrated compelling in vivo efficacy in multiple T-ALL cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. Bi-CD47-IT significantly prolonged the median survival of the tumor-bearing mice and highly effectively depleted the T-ALL blast cells in the peripheral blood, spleen, liver, bone marrow, brain, and spinal cord in the T-ALL CDX and PDX mouse models. Bi-CD47-IT cured 60% of tumor-bearing mice in a T-ALL Molt-4 CDX mouse model. Because CD47 is also expressed on normal tissues, including red blood cells and lymphocytes, specificity is a concern. We thus analyzed the in vitro binding avidity and hemagglutination of bi-CD47-IT in human red blood cells, finding no binding or hemagglutination. We further performed a toxicity study of bi-CD47-IT in humanized mice, which showed that bi-CD47-IT transiently depleted the human lymphocytes for ∼4 weeks after the 10-day treatment. No clinical adverse events were observed. As a result, bi-CD47-IT appears to possess the "optimal" binding avidity, with effective binding to human CD47+ T-ALL tumor cells, no binding to human red blood cells, and weak binding to human lymphocytes. We believe that bi-CD47-IT is a promising and safe therapeutic drug candidate for the targeted therapy of CD47+ cancers.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest disclosure: Zhirui Wang is founder of Rock Immune, Inc. The remaining authors declare no competing financial interests.

References

MeSH terms