How Much Force is Needed to Kill a Single Bacterium?
- PMID: 39568219
- DOI: 10.1002/smll.202407990
How Much Force is Needed to Kill a Single Bacterium?
Abstract
The interaction between bacteria and nanomaterials, particularly from a physical or mechanical perspective, has emerged as a topic of significant interest in both science and medicine. Mechanobactericidal nanomaterials, which exert antimicrobial effects through purely physical mechanisms, hold promise as alternative strategies to combat bacterial resistance to traditional antibiotics. High-aspect-ratio nanoparticles and surface topographies are being engineered to enhance their mechanobactericidal properties. However, progress in this field is hindered by an incomplete understanding of how these materials induce mechanical cell death in bacteria. This review examines the role of atomic force microscopy (AFM) nanoindentation in quantifying forces required to rupture the bacterial cell wall. The reported values range from nN to a few tens of nN, depending on the type of bacterium and the experimental conditions used. The potential effect of AFM tip properties, loading speed, bacterial immobilization strategy, or environmental conditions on the measured rupture values are discussed. This perspective also highlights the complexities of modeling bacterial cell rupture and the importance of pressure as a parameter for standardizing results across experiments. Furthermore, the implications of these quantitative insights to understand the mechanisms of action of mechanobactericidal nanomaterials are discussed.
Keywords: atomic force microscopy; bacterial cell wall; mechano‐bactericidal; nanoindentation; rupture force.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Mechanically Induced Bacterial Death Imaged in Real Time: A Simultaneous Nanoindentation and Fluorescence Microscopy Study.ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31235-31241. doi: 10.1021/acsami.0c08184. Epub 2020 Jun 12. ACS Appl Mater Interfaces. 2020. PMID: 32476402
-
Real-Time Imaging of the Mechanobactericidal Action of Colloidal Nanomaterials and Nanostructured Topographies.Small Sci. 2023 Apr 5;3(5):2300002. doi: 10.1002/smsc.202300002. eCollection 2023 May. Small Sci. 2023. PMID: 40213324 Free PMC article.
-
Cell biology of microbes and pharmacology of antimicrobial drugs explored by Atomic Force Microscopy.Semin Cell Dev Biol. 2018 Jan;73:165-176. doi: 10.1016/j.semcdb.2017.06.022. Epub 2017 Jun 28. Semin Cell Dev Biol. 2018. PMID: 28668355 Review.
-
Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.Antonie Van Leeuwenhoek. 2006 Apr-May;89(3-4):373-86. doi: 10.1007/s10482-005-9041-y. Epub 2006 Apr 25. Antonie Van Leeuwenhoek. 2006. PMID: 16779634
-
Effects of antibacterial agents and drugs monitored by atomic force microscopy.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 May-Jun;6(3):230-44. doi: 10.1002/wnan.1258. Epub 2014 Feb 24. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014. PMID: 24616433 Review.
Cited by
-
Strategies and applications of antibacterial surface-modified biomaterials.Bioact Mater. 2025 Jul 9;53:114-140. doi: 10.1016/j.bioactmat.2025.07.009. eCollection 2025 Nov. Bioact Mater. 2025. PMID: 40688018 Free PMC article. Review.
References
-
- a) N. Lin, P. Berton, C. Moraes, R. D. Rogers, N. Tufenkji, Adv. Colloid Interface Sci. 2018, 252, 55;
-
- b) A. Roy, K. Chatterjee, Nanoscale 2021, 13, 647;
-
- c) K. Modaresifar, S. Azizian, M. Ganjian, L. E. Fratila‐Apachitei, A. A. Zadpoor, Acta Biomater. 2019, 83, 29;
-
- d) D. P. Linklater, V. A. Baulin, S. Juodkazis, R. J. Crawford, P. Stoodley, E. P. Ivanova, Nat. Rev. Microbiol. 2021, 19, 8.
-
- a) S. Hawi, S. Goel, V. Kumar, O. Pearce, W. N. Ayre, E. P. Ivanova, ACS Appl. Nano Mater. 2022, 5, 1;
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous