Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 4;15(47):19936-19943.
doi: 10.1039/d4sc04038d. eCollection 2024 Dec 4.

Dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes

Affiliations

Dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes

Wanru Han et al. Chem Sci. .

Abstract

Herein, we demonstrate a practical dual ligand-enabled iron photocatalysis paradigm-converting all kinds of halogen-containing carboxylates (C n X m COO-, X: F, Cl, Br) into C n X m radicals for the valuable chloro/fluoro-polyhaloalkylation of non-activated alkenes with easily available trichloroacetonitrile/Selectfluor as the electrophilic halogenation reagent. The modular in situ assembly of the effective iron and C n X m COO--based light-harvesting species using the two ligands-OMe/CF3-substituted bipyridine and acetonitrile/trichloroacetonitrile is evidenced by detailed mechanistic studies. The late-stage modification, low loading amount of iron (TON: 257) and feasible gram-scale synthesis show the utility of this protocol. We thus anticipate that the dual ligand-enabled iron photocatalysis paradigm may facilitate activation and transformation of inert bulk chemicals.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1. Paradigms for activation of inert compounds. (a) Pursuing the activation of inert chemicals under milder conditions. (b) The redox character of iron(iii). (c) Decarboxylation of CnFmCOOH promoted by purple light. (d) This work: dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes.
Fig. 2
Fig. 2. Investigations of chloro/fluoro-polyhaloalkylation of alkenes. (a) Photo-induced iron mediated chloro-trifluoromethylation of an alkene. (b) Proposed mechanism of photo-induced iron catalyzed chloro/fluoro-polyhaloalkylation of alkenes. (c) Optimal conditions of the chloro/fluoro-polyhaloalkylation of alkenes.
Fig. 3
Fig. 3. Chloro/fluoro-polyhaloalkylation of alkenes via iron photocatalysis. a 24 h reaction time. b 0.5 mmol Selectfluor was used. Isolated yields.
Fig. 4
Fig. 4. Mechanistic studies. (a) Necessity of continuous blue light irradiation. (b) The first-order rate dependency on Fe(OTf)3/L2 of the reaction. (c) The comparision of various iron(iii) salts. (d) UV-Vis studies on the iron photocatalysis.
Fig. 5
Fig. 5. Identification of iron and CnXmCOO-based light-harvesting species. (a) DFT calculations on iron and CnXmCOO-based light-harvesting species. (b) Experimental evidence for CH3CN/CCl3CN as the second ligand. (c) CH3CN as the second ligand to promote the reaction.

Similar articles

References

    1. Prier C. K. Rankic D. A. MacMillan D. W. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. - DOI - PMC - PubMed
    2. Bellotti P. Huang H.-M. Faber T. Glorius F. Chem. Rev. 2023;123:4237–4352. doi: 10.1021/acs.chemrev.2c00478. - DOI - PubMed
    3. Hartwig J. F. Larsen M. A. ACS Cent. Sci. 2016;2:281–292. doi: 10.1021/acscentsci.6b00032. - DOI - PMC - PubMed
    4. Jiang H. Studer A. Chem. Soc. Rev. 2020;49:1790–1811. doi: 10.1039/C9CS00692C. - DOI - PubMed
    5. Narayanam J. M. Stephenson C. R. Chem. Soc. Rev. 2011;40:102–113. doi: 10.1039/B913880N. - DOI - PubMed
    6. Ravelli D. Protti S. Fagnoni M. Chem. Rev. 2016;116:9850–9913. doi: 10.1021/acs.chemrev.5b00662. - DOI - PubMed
    7. Holmberg-Douglas N. Nicewicz D. A. Chem. Rev. 2022;122:1925–2016. doi: 10.1021/acs.chemrev.1c00311. - DOI - PMC - PubMed
    1. Chen M. Buchwald S. L. Angew. Chem., Int. Ed. 2013;52:11628–11631. doi: 10.1002/anie.201306094. - DOI - PMC - PubMed
    2. Matsui K. Tobita E. Ando M. Kondo K. Chem. Lett. 1981;10:1719–1720. doi: 10.1246/cl.1981.1719. - DOI
    1. Cho E. J. Senecal T. D. Kinzel T. Zhang Y. Watson D. A. Buchwald S. L. Science. 2010;328:1679–1681. doi: 10.1126/science.1190524. - DOI - PMC - PubMed
    2. Rodríguez N. Goossen L. J. Chem. Soc. Rev. 2011;40:5030–5048. doi: 10.1039/C1CS15093F. - DOI - PubMed
    3. Weaver J. D. Recio A. Grenning A. J. Tunge J. A. Chem. Rev. 2011;111:1846–1913. doi: 10.1021/cr1002744. - DOI - PMC - PubMed
    4. Wei Y. Hu P. Zhang M. Su W. Chem. Rev. 2017;117:8864–8907. doi: 10.1021/acs.chemrev.6b00516. - DOI - PubMed
    5. Li X. Yang T. Li J. Li X. Chen P. Lin Z. Liu G. Nat. Chem. 2023;15:862–871. doi: 10.1038/s41557-023-01192-3. - DOI - PubMed
    1. Fujiwara Y. Dixon J. A. O'Hara F. Funder E. D. Dixon D. D. Rodriguez R. A. Baxter R. D. Herlé B. Sach N. Collins M. R. Ishihara Y. Baran P. S. Nature. 2012;492:95–99. doi: 10.1038/nature11680. - DOI - PMC - PubMed
    2. Yin D. Su D. Jin J. Cell Rep. Phys. Sci. 2020;1:100141. doi: 10.1016/j.xcrp.2020.100141. - DOI
    3. Tang M. Draper F. Pham L. N. Ho C. C. Huang H. Sun J. Thickett S. C. Coote M. L. Connell T. U. Bissember A. C. J. Org. Chem. 2024;89:2683–2690. doi: 10.1021/acs.joc.3c02746. - DOI - PubMed
    1. Lai C. Mallouk T. E. J. Chem. Soc., Chem. Commun. 1993:1359–1361. doi: 10.1039/C39930001359. - DOI
    2. Liu W. Yang X. Zhou Z.-Z. Li C.-J. Chem. 2017;2:688–702. doi: 10.1016/j.chempr.2017.03.009. - DOI
    3. Yuan T.-T. Chen J. Pham L. N. Paul S. White L. V. Li J. Lan P. Coote M. L. Banwell M. G. He Y.-T. Org. Chem. Front. 2023;10:4649–4657. doi: 10.1039/D3QO00754E. - DOI

LinkOut - more resources