Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 19;15(47):20064-20072.
doi: 10.1039/d4sc07036d. eCollection 2024 Dec 4.

Ru(ii)-catalyzed regioselective oxidative Heck reaction with internal olefins that tolerated strongly coordinating heterocycles

Affiliations

Ru(ii)-catalyzed regioselective oxidative Heck reaction with internal olefins that tolerated strongly coordinating heterocycles

Ci Chen et al. Chem Sci. .

Abstract

The oxidative Heck reaction of strongly coordinating heterocycles with internal olefins often led to elusive reactivity and regioselectivity. Herein, by judicious choice of X-type directing groups under Ru(ii) catalysis, we achieved the regioselective oxidative Heck reaction of strongly coordinating heterocycles with sterically demanding internal olefins. It was postulated that the "match/mismatch effect" of sterically demanding internal olefins as coupling partners and subsequent kinetically favoured Michael addition or oxidative aromatization act as driving forces to facilitate the desired reactivity and site-selectivity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Regioselective oxidative Heck reaction with internal olefins that tolerated strongly coordinating heterocycles.
Scheme 2
Scheme 2. Regioselective oxidative Heck reaction of heterocycles with internal olefins.
Scheme 3
Scheme 3. Preliminary mechanistic studies.
Scheme 4
Scheme 4. Regioselective oxidative Heck reaction with internal olefins.
Scheme 5
Scheme 5. N–OPiv oxime enabled oxidative Heck reaction of heterocycles with sterically demanding internal olefins.
Scheme 6
Scheme 6. Mechanistic studies.
Scheme 7
Scheme 7. Synthetic transformations. Conditions: (a) 3b (0.1 mmol), NaOAc (2.0 equiv.), NH2OH·HCl (2.0 equiv.), MeOH/H2O (1.0 mL/1.0 mL), 90 °C, 2 h; (b) 3b (0.1 mmol), NaN3 (4.0 equiv.), NH4Cl (2.0 equiv.), DMF (1.0 mL), N2, 120 °C, 24 h; (c) 3b (0.1 mmol), NaOH aqueous solution (3 equiv., 3 M), 80 °C, 15 h; (d) 3b-V (0.05 mmol), K2CO3 (2.0 equiv.), MeI (2.0 equiv.), THF (1.0 mL), 40 °C, 5 h; (e) 3e (0.10 mmol), Pd(PPh3)4 (0.005 mmol), K2CO3 (0.4 mmol), Ar–B(OH)2 (0.12 mmol), EtOH/H2O/toluene = (0.3 mL/0.4 mL/1.0 mL), 95 °C, 12 h.

Similar articles

References

    1. Heck R. F. Palladium-Catalyzed Reactions of Organic Halides with Olefins. Acc. Chem. Res. 1979;12:146–151. doi: 10.1021/ar50136a006. - DOI
    2. Jia C. Kitamura T. Fujiwara Y. Catalytic Functionalization of Arenes and Alkanes via C–H Bond Activation. Acc. Chem. Res. 2001;34:633–639. doi: 10.1021/ar000209h. - DOI - PubMed
    3. The Mizoroki-Heck Reaction, ed. M. Oestreich, Wiley, Chichester, 2009
    4. Dounay B. Overman L. E. The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev. 2003;103:2945–2964. doi: 10.1021/cr020039h. - DOI - PubMed
    1. For selected examples on the directed oxidative Heck reaction with internal olefins:

    2. Leow D. Li G. Mei T.-S. Yu J.-Q. Activation of Remote meta-C–H Bonds Assisted by an End-on Template. Nature. 2012;486:518–522. doi: 10.1038/nature11158. - DOI - PMC - PubMed
    3. Yang G. Lindovska P. Zhu D. Kim J. Wang P. Tang R.-Y. Movassaghi M. Yu J.-Q. Pd(II)-Catalyzed meta-C–H Olefination, Arylation, and Acetoxylation of Indolines Using a U-Shaped Template. J. Am. Chem. Soc. 2014;136:10807–10813. doi: 10.1021/ja505737x. - DOI - PubMed
    4. Xu J. Chen J. Gao F. Xie S. Xu X. Jin Z. Yu J.-Q. Sequential Functionalization of meta-C–H and ipso-C–O Bonds of Phenols. J. Am. Chem. Soc. 2019;141:1903–1907. doi: 10.1021/jacs.8b13403. - DOI - PMC - PubMed
    5. Park H. Yu J.-Q. Palladium-Catalyzed [3 + 2] Cycloaddition via Twofold 1,3-C(sp3)–H Activation. J. Am. Chem. Soc. 2020;142:16552–16556. doi: 10.1021/jacs.0c08290. - DOI - PMC - PubMed
    6. Zhang P. Jiang Z. Fan Z. Li G. Ma Q. Huang J. Tang J. Xu X. Yu J.-Q. Jin Z. Macrocyclization via Remote meta-Selective C–H Olefination Using a Practical Indolyl Template. Chem. Sci. 2023;14:8279–8287. doi: 10.1039/D3SC01670F. - DOI - PMC - PubMed
    7. Bag S. Patra T. Modak A. Deb A. Maity S. Dutta U. Dey A. Kancherla R. Maji A. Hazra A. Bera M. Maiti D. Remote para-C–H Functionalization of Arenes by a D-Shaped Biphenyl Template-Based Assembly. J. Am. Chem. Soc. 2015;137:11888–11891. doi: 10.1021/jacs.5b06793. - DOI - PubMed
    8. Yu Z. Liu Q. Li Q. Huang Z. Yang Y. You J. Remote Editing of Stacked Aromatic Assemblies for Heteroannular C–H Functionalization by a Palladium Switch between Aromatic Rings. Angew. Chem., Int. Ed. 2022;61:e202212079P. doi: 10.1002/anie.202212079. - DOI - PubMed
    1. For selected examples on the aerobic oxidative Heck reaction with terminal olefins:

    2. Zhang Y.-H. Shi B.-F. Yu J.-Q. Pd(II)-Catalyzed Olefination of Electron-Deficient Arenes Using 2,6-Dialkylpyridine Ligands. J. Am. Chem. Soc. 2009;131:5072–5074. doi: 10.1021/ja900327e. - DOI - PMC - PubMed
    3. Engle K. M. Wang D.-H. Yu J.-Q. Ligand-Accelerated C–H Activation Reactions: Evidence for a Switch of Mechanism. J. Am. Chem. Soc. 2010;132:14137–14153. doi: 10.1021/ja105044s. - DOI - PMC - PubMed
    4. Engle K. M. Wang D.-H. Yu J.-Q. Constructing Multiply Substituted Arenes Using Sequential Palladium(II)-Catalyzed C–H Olefination. Angew. Chem., Int. Ed. 2010;49:6169–6173. doi: 10.1002/anie.201002077. - DOI - PMC - PubMed
    5. Piotrowicz M. Zakrzewski J. Aerobic Dehydrogenative Heck Reaction of Ferrocene with a Pd(OAc)2/4,5-Diazafluoren-9-one Catalyst. Organometallics. 2013;32:5709–5712. doi: 10.1021/om400410u. - DOI
    6. Piotrowicz M. Zakrzewski J. Metivier R. Brosseau A. Makal A. Wozniak K. Aerobic Palladium(II)-Catalyzed Dehydrogenative Heck Reaction in the Synthesis of Pyrenyl Fluorophores. A Photophysical Study of β-Pyrenyl Acrylates in Solution and in the Solid State. J. Org. Chem. 2015;80:2573–2581. doi: 10.1021/jo502619k. - DOI - PubMed
    7. Liu B. Jiang H.-Z. Shi B.-F. Palladium-Catalyzed Oxidative Olefination of Phenols Bearing Removable Directing Groups under Molecular Oxygen. J. Org. Chem. 2014;79:1521–1526. - PubMed
    8. Cong X. Tang H. Wu C. Zeng X. Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics. 2013;32:6565–6575. doi: 10.1021/om400890p. - DOI
    9. Huang Q. Zhang X. Qiu L. Wu J. Xiao H. Zhang X. Lin S. Palladium-Catalyzed Olefination and Arylation of Polyfluoroarenes Using Molecular Oxygen as the Sole Oxidant. Adv. Synth. Catal. 2015;357:3753–3757. doi: 10.1002/adsc.201500632. - DOI
    10. Xu Y.-H. Chok Y. K. Loh T.-P. Synthesis and Characterization of a Cyclic Vinyl-palladium(II) Complex: Vinylpalladium Species as the Possible Intermediate in the Catalytic Direct Olefination Reaction of Enamide. Chem. Sci. 2011;2:1822–1825. doi: 10.1039/C1SC00262G. - DOI
    1. Liu Y.-J. Xu H. Kong W.-J. Shang M. Dai H.-X. Yu J.-Q. Overcoming the Limitations of Directed C–H Functionalizations of Heterocycles. Nature. 2014;515:389–393. doi: 10.1038/nature13885. - DOI - PMC - PubMed
    2. Wang H. Lorion M. M. Ackermann L. Overcoming the Limitations of C–H Activation with Strongly Coordinating N-Heterocycles by Cobalt Catalysis. Angew. Chem., Int. Ed. 2016;55:10386–10390. doi: 10.1002/anie.201603260. - DOI - PubMed
    3. Shang M. Wang M.-M. Saint-Denis T. G. Li M.-H. Dai H.-X. Yu J.-Q. Copper-Mediated Late-Stage Functionalization of Heterocycle-Containing Molecules. Angew. Chem., Int. Ed. 2017;56:5317–5321. - PubMed
    4. Xu L.-L. Wang X. Ma B. Yin M.-X. Lin H.-X. Dai H.-X. Yu J.-Q. Copper Mediated C–H Amination with Oximes: en route to Primary Anilines. Chem. Sci. 2018;9:5160–5164. doi: 10.1039/C8SC01256C. - DOI - PMC - PubMed
    5. Lu Q. Mondal S. Cembellín S. Greßies S. Glorius F. Site-selective C–H Activation and Regiospecific Annulation Using Propargylic Carbonates. Chem. Sci. 2019;10:6560–6564. doi: 10.1039/C9SC01703H. - DOI - PMC - PubMed
    6. Li Z. Wang Z. Chekshin N. Qian S. Qiao J. X. Cheng P. T. Yeung K.-S. Ewing W. R. Yu J.-Q. A Tautomeric Ligand Enables Directed C–H Hydroxylation with Molecular Oxygen. Science. 2021;372:1452–1457. doi: 10.1126/science.abg2362. - DOI - PMC - PubMed
    1. For the oxidative Heck reaction of strongly coordinating heterocycles with terminal olefins:

    2. Ye M. Gao G.-L. Yu J.-Q. Ligand-Promoted C-3 Selective C–H Olefination of Pyridines with Pd Catalysts. J. Am. Chem. Soc. 2011;133:6964–6967. doi: 10.1021/ja2021075. - DOI - PubMed
    3. Dai H.-X. Stepan A. F. Plummer M. S. Zhang Y.-H. Yu J.-Q. Divergent C–H Functionalizations Directed by Sulfonamide Pharmacophores: Late-Stage Diversification as a Tool for Drug Discovery. J. Am. Chem. Soc. 2011;133:7222–7228. doi: 10.1021/ja201708f. - DOI - PubMed

LinkOut - more resources