Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 4;36(7).
doi: 10.1088/1361-6528/ad947c.

Carbyne as a promising material for E-nose applications with machine learning

Affiliations
Review

Carbyne as a promising material for E-nose applications with machine learning

Alexey Kucherik et al. Nanotechnology. .

Abstract

There has been a lot of study and advancement in the area of carbon allotropes in the last several decades, driven by the exceptional and diverse physical and chemical characteristics of carbon nanomaterials. For example, nanostructured forms such as carbon nanotubes (CNTs), graphene, and carbon quantum dots have the potential to revolutionize various industries (Roston 2010The Carbon Age: How Life's Core Element Has Become Civilization's Greatest Threat; In and Noy 2014Nanotechnology's Wonder Material: Synthesis of Carbon Nanotubes; Penget al2014Nanotechnol. Sci. Appl.7 1-29). The global scientific community continues to research in the field of creating new materials, particularly low-dimensional carbon allotropes such as CNTs and carbyne. Carbyne is a one-dimensional carbon allotrope with a large surface area, chemical reactivity, and gas molecule adsorption potential that makes it extremely sensitive to gases and electronic nose (E-nose) applications due to its linear sp-hybridized atomic chain structure. The primary objective of this work is to increase the sensitivity, selectivity, and overall efficiency of E-nose systems using a synergistic combination of carbyne-based sensing components with cutting-edge machine learning (ML) techniques. The exceptional electronic properties of carbyne, such as its high electron mobility and adjustable bandgap, enable rapid and specific adsorption of various gas molecules. Additionally, its significant surface area-to-volume ratio enhances the detection of trace concentrations. Our suggested advanced hybrid system utilises support vector machines and convolutional neural networks as sophisticated ML approaches to analyse data provided by carbyne sensors. These algorithms enhance the precision and durability of gas detection by effectively recognising intricate patterns and correlations in the sensor data. Empirical evidence suggests that E-nose systems based on carbyne have superior performance in terms of reaction time, sensitivity, and specificity compared to conventional materials. This research emphasises the revolutionary potential of carbyne in the advancement of next-generation gas sensing systems, which has significant implications for applications in environmental monitoring, medical diagnostics, and industrial process control.

Keywords: E-nose; carbon nanomaterials; carbyne; gas sensors; machine learning.

PubMed Disclaimer

LinkOut - more resources