Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation
- PMID: 39570199
- DOI: 10.1152/ajpheart.00498.2024
Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Keywords: cerebral autoregulation; cerebral blood flow; cerebrovascular resistance; critical closing pressure; directional sensitivity.
Copyright © 2025 The Authors.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
