Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 11;124(23):13099-13177.
doi: 10.1021/acs.chemrev.4c00177. Epub 2024 Nov 21.

The Chemistry of Phytoplankton

Affiliations
Review

The Chemistry of Phytoplankton

Xiaoying Liu et al. Chem Rev. .

Abstract

Phytoplankton have a high potential for CO2 capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO2, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Venus, Earth, and Mars represent the three rocky inner planets in our Solar System. The dramatic transformation of Earth’s atmosphere to a highly oxygenated system was initiated and sustained by phytoplankton, thus exemplifying the tremendous impact they have on the environment. (Images sourced from NASA).
Figure 2
Figure 2
a: Satellite images of large-scale phytoplankton blooms. a1: Algal bloom in Western Lake Erie on September 26, 2017. The Microcystis sp bloom shown is near downtown Toledo and stretches all the way to Lake Ontario. a2: Red tides in Benguela upwelling in 2008. a3: Cyanobacteria bloom in Lake Erie. (Photo courtesy of Tim Davis). a4: Algal bloom of Emiliania huxleyi off the southern coast of Devon and Cornwall in England in 1999. b: The taxonomic composition of HABs species (b1: Prymnesiophytes; b2: Diatoms; b3: Cyanobacteria; b4: Dinoflagellates). c: Total number of recorded HAB events (Y-axis) per year (X-axis) around the globe showing a steady upward trend.
Figure 3
Figure 3
CO2 emission and absorption.
Figure 4
Figure 4
A Mediterranean outflow of highly alkaline water results in a nonskeletal carbonate factory that mitigates the effects of climate change by sequestering CO2.
Figure 5
Figure 5
Summary of major approaches for mitigating HABs. Reduction of nutrient and greenhouse gas input is the most effective way to prevent HABs, but it is difficult to implement. The physical control of clay application to HABs has been widely used for a long time, but it is not suitable for large bodies of water. Biological controls, including parasites and viruses infecting dinoflagellates, are limited and can have consequences on the surrounding land.
Figure 6
Figure 6
Geographical distributions of ASP, PSP, DSP, NSP and CP.
Scheme 1
Scheme 1. Synthesis of the C-1-C-29 Fragment
a. acrolein, Hoveyda-Grubbs II, DCM, 72% yield; b. acetaldehyde, Bi(NO3)3·5H2O, DCM; c. NaBH4, MeOH, 87% yield (2 steps); d. NapBr, NaH, DMF, 82% yield; e. TBAF, THF, 96% yield; f. DMP, DCM, 89% yield; g. 71, THF, 69% yield; h. TsOH·H2O, 89% yield BRSM; i. TBSOTf, 2,6-lutidine, quant.; j. BH3·SMe2, CyH; NaOH, H2O2, 91% yield; k. 1-phenyl-1H-tetrazole-5-thiol (PTSH); PPh3, DIAD, 91% yield; l. m-CPBA, 86% yield; m. HC≡CC4H8OPMB, n-BuLi, 81% yield; n. Ru cat. 76, IPA, 90% yield, 94% ee; o. H2, Pd/C(en), 89% yield; p. TBSCl, imidazole, DMF, quant.; q. 78, n-BuLi, THF, quant. r. (S)-(−)-2-methyl-CBS-oxazaborolidine, BH3·SMe2, PhMe quant. dr 95/5; s. TBSCl, imidazole, DMF, quant.; t. Hoveyda-Grubbs II, DCM, 70% yield, E/Z = 13/1; u. TBSOTf, 2,6-lutidine, quant.; v. DDQ, pH 7 buffer, DCM; w. SO3·Py, DMSO, NEt3, 67% yield (2 steps); x. 74, KHMDS, THF, 86% yield; y. K2OsO4·2H2O, DHQ-MEQ, K2CO3, K3Fe(CN)6, MeSO2NH2, t-BuOH/t-BuOMe/H2O, 65% yield, dr 13/1; z. TBSOTf, 2,6-lutidine, DCM, 93% yield; aa. DDQ, pH 7 buffer, DCM, then NaBH4, MeOH/THF, 83% yield; ab. o-O2NC6H4SeCN, PMe3, 4 ÅMS, THF, then aq. H2O2, 97% yield.
Scheme 2
Scheme 2. Synthesis of the C-30-C-52 Fragment
a. ethyl acrylate, Hoveyda-Grubbs II, 72% yield; b. DIBAL, DCM, 95% yield; c. NaH, BnBr, DMF, 87% yield; d. K2OsO4·2H2O, DHQ-MEQ, K2CO3, K3Fe(CN)6, MeSO2NH2, t-BuOH/t-BuOMe/H2O,, 83% yield, dr 7.5/1; e. Ac2O, DMAP, pyridine, 93% yield; f. 89, PdCl2(dppf), aq. Cs2CO3, DMF, 87% yield; g. HF·pyr, THF, 82% yield; h. Ti(O-i-Pr)4, TBHP, L-(+)-DET, 4 ÅMS, DCM; i. K2CO3, MeOH; j. PPTS, DCM; 64% yield (3 steps); k. PPTS, 1,1-dimethoxycyclopentane, DCM, 97% yield; l. K2OsO4·2H2O, DHQ-MEQ, K2CO3, K3Fe(CN)6, MeSO2NH2, t-BuOH/H2O,; 96% yield; dr 10/1; m. PPTS, 1,1-dimethoxycyclopentane, DCM, 82% yield; n. MsCl, NEt3, DCM, 96%; o. Raney Ni, H2, EtOH, 88% yield; p. K2CO3, MeOH, 78% yield; q. 95, Et2O/hexane, 85% yield; r. TBSOTf, 2,6-lutidine, DCM, 91% yield; s. DIBAL, Ni(dppp)Cl2, THF, then NIS; 76% yield; t. DDQ, pH 7 buffer, DCM, 91% yield; u. TESCl, NEt3, DCM, 95% yield; v. t-BuLi, Et2O, 71% yield, C-43 epimer ratio 1.7/1; w. TBSOTF, 2,6-lutidine, DCM, 93% yield; x. TBAF/AcOH, THF, 94% yield; y. (COCl)2, NEt3, DMSO; z. Ohira-Bestman reagent, MeOH, Cs2CO3, 93% yield (2 steps); aa. LHMDS, MeI, THF, quant.; ab. PdCl2(P-o-tol3)2, Bu3SnH, THF; ac. I2, DCM, 73% yield (2 steps).
Scheme 3
Scheme 3. Synthesis of the C-53-C-67 Fragment
a. PTSH, PPh3, DIAD, THF, 99% yield; b. (NH4)6Mo7O24·4H2O, aq. H2O2, EtOH/THF, quant. c. 105, Pd(PPh3)4, THF, 81% yield; d. 107, Pd(PPh3)4, CuCl, DMSO/THF, 75% yield.
Scheme 4
Scheme 4. AM3 Prepared from Compounds 85 and 102
a. 85: 9-BBN, THF, then 1M aq. Cs2CO3 combined with 102, Pd(PPh3)4, DMF, 77% yield; b. DDQ, pH 7 buffer, DCM, 75% yield (2 cycles); c. (COCl)2, NEt3, DMSO, DCM, quant.; d. KHMDS, THF/HMPA, 75% yield, E/Z = 10/1; e. HF·pyr, MeOH, (CH2OH)2, THF, 58% yield (2 cycles).
Scheme 5
Scheme 5. Nishikawa’s Synthesis of OTX-E
a. m-CPBA, DCM; b. H5IO6, Et2O; c. 3-methoxyphenylmagnesium bromide, THF, 52% yield (3 steps), dr 1/1; (COCl)2, NEt3, DMSO, 92% yield; e. RuCl[(S,S)-Tsden(p-cymene), HCO2H, NEt3, 78% yield; f. NaH, MeI, DMF, 98% yield; g. O3, pyridine, MeOH then PPh3, 88% yield; h. BF3-Et2O, THF then H2O2, NaOH; i. HCl-Et2N(CH2)2SH, t-BuOK, DMF, 73% yield (2 steps); j. TESOTf, 2.6-lutidine, DCM, 84% yield; k. O3, pyridine, MeOH/DCM then PPh3, 93% yield; l. n-BuLi, – 78 °C THF, then add 206 and warm to −40 °C, 71% yield; m. DMP, DCM, 84% yield; n. Amberlyst-15, DCM, 64% yield; o. CDI, MeCN then CH2(CO2Me)(CO2K), MgCl2, NEt3, THF; p. K2CO3, MeOH, 72% yield (2 steps); q. TIPSCl, DBU, DCM, 84% yield; r. LiBH4, Et2O, 94% yield; s. BF3-Et2O, DCM, MS4 Å, 59% yield; t. TBAF, HOAc, THF, 97% yield.
Scheme 6
Scheme 6. Synthesis of Nhatrangin from Compound 211
a. TCBCl, NEt3, DMAP, toluene, 90% yield; b. O3, DCM/MeOH, – 78 °C then PPh3, 93% yield; c. NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O, 92% yield; d. TBAF, THF, 92% yield.
Scheme 7
Scheme 7. Synthesis of Lyngbyatoxin A (265)
a. CsF. MeCN, 0 °C to rt, 75% yield; b. H2, Pd/C, NEt3, EtOAc; c. Ac2O, AcOH, rt (87% yield, 2 steps); d. K2CO3, DMF, 65 °C, 96% yield; e. ZrCl4, DCM, 34 °C, 90% yield; f. NaHCO3, MeOH, 40 °C, 50% yield; g. LiBH4, THF 0 °C to rt; h. TBSCl, TBAI, imidazole, DMF, rt, 90% yield (2 steps); i. NBS, – 78 °C to −15 °C, THF, 87% yield; j. [P(t-Bu)3PdBr]2 (15 mol %), LiBr, THF/PhMe, 80 °C, 75% yield, dr 1/1; k. Cp2Zr(H)Cl, THF, 50 °C l. BrPPh3CH3, t-BuOK, THF, 0 °C to rt, 64% yield (2 steps); m. LiBF4, CSA, THF, rt, 63% yield.
Scheme 8
Scheme 8. Synthesis of the G-Ring Fragment 301
a. NEt3, DMAP, PhH, 84% yield; b. THF, – 78 °C then TMSCl; c. rt, 12 h then aq. work-up; d. LAH, Et2O, 81-83% yield (2 steps); e. benzoyl chloride, pyridine; f. DDQ, DCM/H2O; g. O3, N-methylmorpholine N-oxide, DCM; h. NaBH4, EtOH, 77% yield (4 steps); i. (COCl)2, DMSO, NEt3, DCM; j. Bn2NH2+TFA, PhMe, 50 °C, 89% yield; k. NaBH4, EtOH; l. MOMCl, TBAI, i-Pr2NEt; m. TBAF, THF; n. (COCl)2, DMSO, NEt3; o. Ph3PCH3Br, KHMDS, 87% yield (5 steps); p. LAH, Et2O; q. (COCl)2, DMSO, NEt3, 87% yield (2 steps).
Scheme 9
Scheme 9. Preparation of the BCD-Fragment (311)
a. Pd(dppf)Cl2, AsPh3, Cs2CO3; b. AD-mix β; c. TBAF; d. (COCl)2, DMSO; e. CSA, MeOH, then solvent swap to cyclohexane, rt, 48 h, 78% yield; f. TIPSCl, imidazole; g. TESCl, imidazole; h. DIBAL; i. PMBO(CH2)3Li; j. DMP, pyridine; k. TMSCH2Li; l. KHMDS, 76% yield (8 steps); m. DDQ, DCM/H2O; n. I2, PPh3, imidizole, 87% yield (2 steps).
Scheme 10
Scheme 10. Final Stages of the Pinnatoxin A Synthesis
a. t-BuLi, Et2O, 1 h, 78% yield; b. TBAF; c. DMP; d. CH2CHMgBr; e. second-generation Hoveyda-Grubbs (20 mol %); f. DMP, pyridine, DCM; g. MeCu(CN)Li, BF3-Et2O, 73% yield (2 steps); h. DDQ, DCM/H2O; i. Ts2O, pyridine, DCM; j. NaN3, DMF, 80 °C, 66% yield (3 steps); k. LiBF4, IPA/H2O, 71% yield; l. TEMPO, PhI(OAc)2; m. NaClO2, NaH2PO4; n.TMSCHN2; o.H2, Pd/CaCO3; p. triethylammonium mesitoate, PhMe, 85 °C, 60 h; q. LiOH THF/H2O 37-43% (6 steps).
Scheme 11
Scheme 11. Synthesis of the ABCD Ring System
a. 1-phenyl-1H-tetrazole-5-thiol, NaH, THF/DMF; b. H2O2, (NH4)6Mo7O24·H2O, NaH2PO4 buffer, EtOH, 71% yield (2 steps); c. KHMDS, DMPU, THF, 85% yield, 10:1 E:Z; d. Shi ketone, Bu4NHSO4, oxone, K2CO3, Na2B4O7, DMM/MeCN/H2O then TBAF, THF, 65% yield, dr 4/1; e. pH 11 phosphate buffer, 54% yield; f. VO(acac)2, TBHP, DCM, 68% yield; g. PMPBr, NaH, DMF, 92% yield; h. (E)-1-iodo-2-methylpenta-1,4-diene, n-BuLi, Et2O, CuCN; i. BnBr, NaH, DMF, 77% yield (2 steps); j. Shi ketone, Bu4NHSO4, oxone, K2CO3, Na2B4O7, DMM/MeCN/H2O; k. DDQ, pH 11 phosphate buffer, DCM, 65% yield, dr 6/1; l. NBS, 4 ÅMS, HFIP, 68% yield; m. t-BuOK, THF; n. 9-BBN, THF, NaOH, H2O2, 93% yield (2 steps); o. BnBr, NaH, DMF, 99% yield; p. TsOH·H2O, MeOH/DCM, 89% yield; q. I2, PPh3, imidazole, THF, 95% yield; r. TESCl, imidazole, DCM, 97% yield; s. t-BuOK, THF, 95% yield.
Scheme 12
Scheme 12. Synthesis of the FGH Ring System
a. O3, DCM then PPh3, 78% yield; b. KHMDS, DMPU, THF, 86% yield, 9:1 E:Z; c. Shi ketone, K2CO3, Na2B4O7, DMM/MeCN/H2O, 76% yield, dr 3/1; d. BF3·Et2O, DCM; e. TBSCl, imidazole, DMAP, DMF, 24% yield (2 steps); f. K2CO3, MeOH, 88% yield; g. SO3·pyr, NEt3, Ph3PCHCO2Me, DMSO, DCM, 82% yield; h. [(PPh3)CuH]6, THF; i. DIBAL, DCM; j. TEMPO, PIDA, DCM, 79% yield (3 steps); k. O3, DCM then NaBH4, MeOH; l. TBDPSCl, imidazole, DCM/DMF, 86% yield (2 steps); m. KHMDS, Comins’ reagent, HMPA, THF, 77% yield.
Scheme 13
Scheme 13. Synthesis of the KLM Ring Fragment
a. (COCl)2, DMSO, NEt3, DCM; b. MeMgBr, Et2O; c. TPAP, NMO, 4 ÅMS, DCM, 42% yield (3 steps); d. KHMDS, DMPU, THF; e. H2O2, (NH4)6Mo7O24·H2O, NaH2PO4 buffer, EtOH, 41% yield (2 steps); f. Compound 363, KHMDS, DMPU, THF, 85% yield; g. Shi ketone, Bu4NHSO4, Oxone, NaHCO3, MeCN; h. TBAF, THF, 71% yield (2 steps), dr 2/1; i. pH 8 phosphate buffer, 23% yield; j. DIBAL, PhMe; k. La(OTf)3, 416, PhMe, 73% yield (2 steps); l. TsOH·H2O, MeOH, DCM, 94% yield; m. I2, PPh3, imidazole, THF, 97% yield; n. TESCl, imidazole, DCM, 99% yield; o. t-BuOK, THF, 97% yield.
Scheme 14
Scheme 14. Preparation of the ABCDEFGH Ring System
a. 399: 9-BBN, THF, Cs2CO3, H2O; then combine with 408, Pd(PPh3)4, DMF, 83% yield; b. BH3, THF, NaOH, H2O2, 93% yield, dr >10/1; c. TPAP, NMO, 4 ÅMS, DCM; d. DBU, DCM, 82% yield (2 steps); e. TMSOTf, Et3SiH, DCM, 78% yield; f. I2, PPh3, imidazole, PhH/THF; g. TESCl, imidazole, DMAP, DCM; h. t-BuOK, THF, 89% yield (3 steps); i. 418: 9-BBN, THF, Cs2CO3, H2O; then combine with 423, PdCl2(dppf)·DCM, DMF, 85% yield; j. DMDO, DCM then MeMgBr; k. Ac2O, DMAP, pyridine, 77% yield, (2 steps); l. TBAF, THF; m. TPAP, NMO, 4 ÅMS, DCM; n. K2CO3, MeOH, 83% yield (3 steps); o. TsOH·H2O, MeOH/DCM; p. TESOTf, TESH, MeCN; q. TsOH·H2O, acetone, 65% yield (3 steps); r. DMP, DCM; s. CH2I2, CrCl2, DMF/THF, 76% yield (2 steps); t. 9-BBN, THF, NaOH, H2O2; u. TEMPO, PIDA, DCM, 89% yield (2 steps); v. KHMDS, (PhO)2P(O)Cl, HMPA/THF, 99% yield.
Scheme 15
Scheme 15. Final Stages of the Gymnocin B Synthesis
a. 422: 9-BBN, THF; Cs2CO3, H2O; then combine with 430. Pd(PPh3)4, DMF, 78% yield; b. BH3, THF, NaOH, H2O2; c. TPAP, NMO, 4 ÅMS, DCM; d. DBU, DCM, 72% yield (3 steps); e. EtSH, Zn(OTf)2, MeNO2; f. TESOTf, 2,6-lutidine, DCM; g. Ph3SnH, AIBN, PhMe, 57% yield (3 steps); h. H2, Pd/C, THF; i. I2, PPh3, imidazole, THF; j. TESCl, imidazole, DMAP, DCM/DMF, 65% yield (3 steps); k. vinylmagnesium bromide, CuI, HMPA/THF; l. TASF, THF/DMF; m. methacrolein, Hoveyda-Grubbs II, DCE, 44% yield (3 steps).
Scheme 16
Scheme 16. Synthesis of the C-1-C-9 Fragment
a. LAH, THF, 53% yield; b. (Bu3Sn)2, n-BuLi, CuCN, THF/H2O, 78% yield; c. TBSCl, imidazole, DMAP, 95% yield; d. (E)-(3-iodoallyl)(phenyl)sulfane, Pd(PPh3)4, CuTC, Ph2PO2NBu4, DMF, E/Z = ca. 10/1; e. Na2WO4, aq. H2O2, MeOH/PhH, 63% yield (2 steps).
Scheme 17
Scheme 17. Synthesis of the C-10-C-23 Fragment
a. CH3C≡CMgBr, THF, 81% yield, dr 2/1; b. MnO2, DCM, 61% yield; c. 463 cat., HCO2H/NEt3, DCM, 91% yield, dr >20/1; d. TBSCl, imidazole, DCM, 87% yield; e. 464, EDC, DMAP, DCM, 97% yield; f. H2 (1 atm), Lindlar cat., quinoline, EtOAc, 98% yield; g. Tebbe reagent, THF/PhMe, 47% yield; h. H2 (1 bar), Pt/C, EtOH, 74-83% yield, dr >20/1; i. TBAF, THF, 81% yield; j. DMP, NaHCO3, DCM; k. Ph3P = CHCO2Me, DCM, 86% yield (2 steps); l. DIBAL, THF, 83% yield; m. TBSOTf, 2,6-lutidine, DCM, 95% yield; n. DIBAL, DCM, 87-93% yield; o. (COCl)2, NEt3, DMSO, DCM; p. 470, (R)-3,3′-diBr-BINOL, PhMe, 44-59% yield (2 steps), dr >20/1; q. Ac2O, pyridine, DMAP, DCM, 90% yield; r. DDQ, pH 7 buffer, DCM, 77% yield.
Scheme 18
Scheme 18. Synthesis of the C-24-C-36 Fragment
a. [Ir(cod)Cl]2, 474, allyl acetate, Cs2CO3, 4-Cl-3-NO2-benzoic acid, THF, 81% yield; b. Co cat. 476, t-BuOOH, iPrOH, O2, 72% yield, dr >20/1; c. PIDA, TEMPO, MeCN/H2O, 86% yield; d. MeN(H)OMe-HCl, CDI, DCM, 89% yield; e. 2-methyl-1-propenylmagnesium bromide, THF then DBU cat., DCM, 98% yield; f. NaBH4, CeCl3·7H2O, MeOH, 94% yield, dr >20/1; g. 2-(bromomethyl)naphthalene, NaH, TBAI, THF/DMF, 90% yield; h. Pt(dba)3 cat., 479 R = mesityl, B2pin2, THF, then NaBO3·4H2O, THF/H2O, 76% yield, dr >20/1; i. 1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-imidazole, NaH, THF; j. (1-(trimethylsilyl)vinyl)magnesium bromide, CuCN, THF, 74% yield (2 steps); k. TBSOTf, 2,6-lutidine, DCM, quant.; l. NIS, 2,6-lutidine, HFIP, THF, 80% yield; m. TBAF, HOAc, THF, 83% yield; n. DDQ, pH 7 buffer, DCM, 98% yield.
Scheme 19
Scheme 19. End Stages of the Synthesis
a. Pd2(dba)3, CuI, PPh3, iPr2NH, 91% yield; b. JohnPhosAu(MeCN)SbF6 cat., PPTS, DCM, 69% yield; c. TBSOTf, 2,6-lutidine, DCM, 92% yield; d. HF·pyr, pyridine, 92% yield; e. Ti(OiPr)4, L-(+)-DIPT, cumene hydroperoxide, DCM, 84% yield, dr >20/1; f. I2, PPh3, imidazole, DCM, 88% yield; g. 459, n-BuLi, DMPU, THF, 86% yield, dr ca. 3/2; h. LiBHEt3, THF then [(dppp)PdCl2], LiBHEt3, 49% yield; i. HF·pyr, pyridine, THF, 50% yield.
Scheme 20
Scheme 20. Alternative Route to the Central Fragment
a. 2-(dimethoxymethyl)naphthalene, TsOH·H2O, DMF, 86% yield; b. Ag2CO3/Celite, PhMe; c. TBSCl, imidazole, DCM, 57% yield (2 steps); d. TBDPSCl, imidazole, DCM; e. DIBAL, pentane; f. Ph3PCHCO2Et, PhMe, 59% yield (3 steps); g. DIBAL, THF, 91% yield; h. NapBr, NaH, TBAI, THF, then TBAF, 87% yield; i. I2, PPh3, imidazole, THF, 90% yield; j. t-BuLi, THF, 81% yield; k. TBSOTf, Et3SiH, then PhBCl2, DCM, MS4 Å, 72% yield; l. (COCl)2, NEt3, DMSO, DCM; m. 461, (R)-3,3′-Br-BINOL, PhMe, 68% yield (2 steps); n. Ac2O, pyridine, DMAP, DCM, 90% yield; o. DDQ, pH 7 buffer, DCM, 67% yield (21% diastereomer).
Scheme 21
Scheme 21. Synthesis of the C-1-C-11 Fragment
a. methyl acrylate, DABCO; b. DIBAL, THF, 57% yield (2 steps); c. TBSCl, NaH, THF, 87% yield; d. MsCl, NEt3, THF, 88% yield; e. LiCl, THF, 98% yield; f. vinylmagnesium bromide, CuI, THF; g. TBDPSCl, imdiazole, DCM, 81% yield (2 steps); h. Hoveyda-Grubbs II, methyl acrylate, DCM, 86% yield; i. TMS-SEt, AlCl3, THF, 86% yield; j. MeMgBr, CuBr·SMe2, (S)-(+)-1-[(R)-2-(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine, t-BuOMe, 90% yield, dr >20/1; k. TESH, Pd/C, DCM, 85% yield; l. Bestmann-Ohira reagent, K2CO3, MeOH, 94% yield; m. 9-I-9-BBN, hexane, then AcOH, quant.; n. Zn, LiCl, THF; o. 500, Pd(PPh3)4, THF then TBAF, 76% yield (2 steps); p. Ac2O, pyridine, DMAP, 96% yield.
Scheme 22
Scheme 22. Synthesis of the C-12-C-27 Fragment
a. Allyltrimethylsilane, BF3·Et2O, MeCN, 56% yield; b. NaOMe, MeOH; c. p-methoxybenzaldehyde dimethylacetal, TsOH cat., DMF, 79% yield; d. TBSOTf, 2,6-lutidine, DCM, 86% yield; e. DIBAL, DCM, quant.; f. (COCl)2, DMSO, NEt3, DCM, 87% yield; g. 509, (R)-3,3′-diBr-BINOL, PhMe, 96% yield; h. TBSOTf, 2,6-lutidine, DCM, quant.; i. DDQ, DCM/H2O, 99% yield; j. 511, Pd2(dba)3, PPh3, CuI, iPr2NH, 93% yield; k. JohnPhos-Au(MeCN)SbF6., PPTS, DCM, 65-78% yield; o. OsO4, NaIO4, 2,6-lutidine, 1,4-dioxane/H2O, 87-93% yield.
Scheme 23
Scheme 23. Synthesis of the C-28-C-40 Fragment 520
a. Allyltrimethylsilane, TMSOTf, MeCN, 57% yield, dr >10/1; b. K2CO3, MeOH; c. TBSOTf, 2,6-lutidine, DCM, 95% yield (2 steps); d. Modified Grubbs catalyst, 1-buten-3-ol, DCM, 75% yield; e. TBDPSCl, imidazole, DCM, quant.; f. CSA (cat.), MeOH/DCM, 77% yield; g. Pb(OAc)4, THF, 61% yield; h. SnCl4, DCM, 83% yield, dr 5/1; i. Bu3SnLi, THF, 91% yield.
Scheme 24
Scheme 24. Final Stages of the Synthesis
a. MgBr2·Et2O, DCM, 88% yield; b. PPh3, 4-nitrobenzoic acid, DEAD, PhMe, 67% yield; c. NaOH, MeOH/THF, 91% yield; d. TBSOTf, 2,6-lutidine, DCM, 84% yield; e. Ph3CK, PhNTf2, THF; f. (Bu3Sn)2CuCNLi2, THF, 63% yield (3/1 isomers); g. 506, Pd(PPh3)4, CuTC, [Bu4N][Ph2P(O)O], DMF/THF, 60% yield; h. HF·pyr, THF/pyridine, 32% yield.
Scheme 25
Scheme 25. New Approach Used in the Second-Generation Route
a. JohnPhos-Au(MeCN)SbF6 (2 mol %), PPTS, DCM, 79% yield; b. AgF, MeCN, 90% yield; c. OsO4, NaIO4, dioxane/H2O, 79% yield; d. 528, 520, DCM, 84% yield (12% C-27-epimer); e. (Bu3Sn)2CuCNLi, THF/MeOH, 80% yield; f. 506, Pd2(dba)3 cat., LiCl, DMF; g. NaOH, THF/MeOH/H2O, 70% yield (2 steps); h. TBAF, THF, 99% yield.
Figure 7
Figure 7
Numbering system for each unit of cryptophycins C (R1=C1) and D (R1=H).

References

    1. Schopf J. W.The fossil record: tracing the roots of the cyanobacterial lineage. In The Ecology of Cyanobacteria. Whitton B.A., Potts M., eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000, pp.13–35.10.1007/0-306-46855-7_2 - DOI
    1. Falkowski P. Ocean Science: The power of plankton. Nature 2012, 483 (7387), S17–20. 10.1038/483S17a. - DOI - PubMed
    1. Pierella Karlusich J. J.; Ibarbalz F. M.; Bowler C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 2020, 12, 233–265. 10.1146/annurev-marine-010419-010706. - DOI - PubMed
    1. Krause-Jensen D.; Duarte C. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 2016, 9, 737–742. 10.1038/ngeo2790. - DOI
    1. Prasad R.; Gupta S. K.; Shabnam N.; Oliveira C. Y. B.; Nema A. K.; Ansari F. A.; Bux F. Role of microalgae in global CO2 sequestration: Physiological mechanism, recent development, challenges, and future prospective. Sustainability 2021, 13 (23), 13061.10.3390/su132313061. - DOI

LinkOut - more resources