Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 22;114(6):127.
doi: 10.1007/s11103-024-01529-7.

A novel QTL qRYM-7H for barley yellow mosaic resistance identified by GWAS and linkage analysis

Affiliations

A novel QTL qRYM-7H for barley yellow mosaic resistance identified by GWAS and linkage analysis

Juan Zhu et al. Plant Mol Biol. .

Abstract

Barley (Hordeum vulgare L.) is the fourth largest cereal crop in the world after rice, wheat and maize. Barley yellow mosaic disease (BYMD) is a serious threat to winter barley production. The evolution and mutation of virus strains lead to the breakdown of the resistance of the originally resistant varieties. It is therefore vital to explore new BYMD resistance genes. In this study, a natural population (334 barley varieties or lines) and a double haploid population derived from the cross between Tam407227 and Franklin were used to search for new quantitative trait loci (QTL) for BYMD resistance. Two major QTL on chromosomes 3H and 7H, respectively, were detected from the genome wide association study and validated in the DH population. Among them, The QTL on 3H (qRYM-3H/qTFRYM-3H) was confirmed to be the reported BYMD resistance gene eIF4E by haplotype analysis. And the QTL on 7H (qRYM-7H/qTFRYM-7H) is a novel QTL that has not been reported before. Another QTL on 2H was identified from the DH population. This QTL is more likely the Rmy16Hb reported previously. These three QTL showed an additive effect on improving BYMD resistance with the average disease scores from 2.45 (all sensitive alleles for these three QTL) to 0.62 (all tolerant alleles for these three QTL). The candidate genes for the novel QTL qRYM-7H/qTFRYM-7H were predicted based on transcriptome sequencing and qPCR analysis.

Keywords: Barley yellow mosaic disease; Candidate genes; GWAS; Linkage analysis; QTL.

PubMed Disclaimer

Conflict of interest statement

Declarations. Conflict of interest: The authors have no competing interests. Ethical approval: The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Similar articles

References

    1. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076 - PubMed - DOI
    1. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48 - DOI
    1. Bauer E, Weyen J, Schiemann A, Graner A, Ordon F (1997) Molecular mapping of novel resistance genes against Barley Mild Mosaic Virus (BaMMV). Theor Appl Genet 95:1263–1269 - DOI
    1. Bethke G, Huang Y, Hensel G, Heinen S, Liu C, Wyant SR, Li X, Quin MB, McCormick S, Morrell PL, Dong Y, Kumlehn J, Salvi S, Berthiller F, Muehlbauer GJ (2023) UDP-glucosyltransferase HvUGT13248 confers type II resistance to Fusarium graminearum in barley. Plant Physiol 193:2691–2710 - PubMed - DOI
    1. Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042 - PubMed - DOI

Supplementary concepts

LinkOut - more resources