Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;12(2):e2411579.
doi: 10.1002/advs.202411579. Epub 2024 Nov 21.

Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives

Affiliations

Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives

Bo Dong et al. Adv Sci (Weinh). 2025 Jan.

Abstract

Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced. This approach utilizes captodatively-stabilized carbon radicals to enable radical-radical C─C coupling, effectively constructing complex bioactive molecules. This method offers a promising alternative route for modular synthesis of peptide-derived bio-relevant compounds.

Keywords: amino acid; captodative effect; late‐stage functionalization; radical coupling; thianthrenium salt.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Radical three‐component reactions of aryl sulfonium salts.
Scheme 1
Scheme 1
Substrate scope with amino acid derivatives. a) Standard conditions: 1 0.375 mmol (2.5 equiv.), 2a 0.15 mmol (1.0 equiv.), 3a 0.375 mmol (2.5 equiv.), 4CzIPN 0.0045 mmol (3 mol%), Py 0.15 mmol (1.0 equiv.), MeCN 4.0 mL under blue LED irradiation, under N2 atmosphere, r.t. (23–25 °C), 12 h. b) Replace OTf with BF4. c) Replacing TT with dibenzo(b,d)thiophene. d) Replacing TT with phenoxathiin. Isolated yields are given. d.r. were determined by 1H NMR.
Scheme 2
Scheme 2
Substrates scope with aryl thianthrenium salts and alkenes. a) Standard conditions: 1 0.375 mmol (2.5 equiv.), 2 0.15 mmol (1.0 equiv.), 3 0.375 mmol (2.5 equiv.), 4CzIPN 0.0045 mmol (3 mol%), Py 0.15 mmol (1.0 equiv.), MeCN 4.0 mL under blue LED irradiation, under N2 atmosphere, r.t. (23–25 °C), 12 h. b) Replace OTf with BF4. c) On bench reaction. d) Stop‐flow mirco‐tube (SFMT) reaction. Isolated yields are given. d.r. were determined by 1H NMR. HAT = Hydrogen atom transfer.
Scheme 3
Scheme 3
Synthetic applications. a,b) Gram‐scale reactions; c) One‐pot synthesis; d,e) Synthesis of deuterated and 13C labeling alkyl amino acid derivatives; f) Synthesis of conjugate (10) of Vorinostat and Abiraterone. EDCI · HCl = 1–ethyl–3–(3–dimethylaminopropyl)carbodiimide; HOBT = 1–hydroxybenzotriazole; Et3N = triethylamine; DCM = dichloromethane; THF = tetrahydrofuran.
Scheme 4
Scheme 4
Control experiments and spectroscopic characterization.
Scheme 5
Scheme 5
Electrochemical characterization and proposed mechanism.

Similar articles

References

    1. a) Fosgerau K., Hoffmann T., Drug Discov. Today 2015, 20, 122; - PubMed
    2. b) Henninot A., Collins J. C., Nuss J. M., J. Med. Chem. 2018, 61, 1382. - PubMed
    1. a) Muttenthaler M., King G. F., Adams D. J., Alewood P. F., Nat. Rev. Drug Discovery 2021, 20, 309; - PubMed
    2. b) Gentilucci L., Marco R.De., Cerisoli L., Curr. Pharm. Des. 2010, 16, 3185. - PubMed
    1. a) Dougherty P. G., Sahni A., Pei D., Chem. Rev. 2019, 119, 10241; - PMC - PubMed
    2. b) Vagner J., Qu H., Hruby V. J., Curr. Opin. Chem. Biol. 2008, 12, 292; - PMC - PubMed
    3. c) Blondelle S. E., Lohner K., Curr. Pharm. Des. 2010, 16, 3204. - PubMed
    1. a) Wang Q., Guan J., Wan J., Li Z., Adv R. S. C., 2020, 10, 24397; - PMC - PubMed
    2. b) Kommineni N., Pandi P., Chella N., Domb A. J., Khan W., Polym. Adv. Technol. 2020, 31, 1177;
    3. c) Santra S., Kaittanis C., Santiesteban O. J., Perez J. M., J. Am. Chem. Soc. 2011, 133, 16680. - PMC - PubMed
    1. a) Cooper B. M., Legre J., O’ Donovan D. H., Ölwegård Halvarssonc M., Spring D. R., Chem. Soc. Rev. 2021, 50, 1480; - PubMed
    2. b) Fu C., Yu L., Miao Y., Liu X., Yu Z., Wei M., Acta. Pharm. Sin. B 2023, 13, 498; - PMC - PubMed
    3. c) Wang M.‐D., Hou D.‐Y., Lv G.‐T., Li R.‐X., Hu X.‐J., Wang Z.‐J., Zhang N.‐Y., Yi L., Xu W.‐H., Wang H., Biomaterials 2021, 278, 121139. - PubMed

LinkOut - more resources