Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 6;145(6):635-647.
doi: 10.1182/blood.2024025010.

Prothrombotic antibodies targeting the spike protein's receptor-binding domain in severe COVID-19

Affiliations

Prothrombotic antibodies targeting the spike protein's receptor-binding domain in severe COVID-19

Wen Zhu et al. Blood. .

Abstract

Thromboembolic complication is common in severe coronavirus disease 2019 (COVID-19), leading to an investigation into the presence of prothrombotic antibodies akin to those found in heparin-induced thrombocytopenia (HIT). In a study of samples from 130 hospitalized patients, collected 3.6 days after COVID-19 diagnosis, 80% had immunoglobulin G (IgG) antibodies recognizing complexes of heparin and platelet factor 4 (PF4; PF4/H), and 41% had antibodies inducing PF4-dependent P-selectin expression in CpG oligodeoxynucleotide-treated normal platelets. Unlike HIT, both PF4/H-reactive and platelet-activating antibodies were found in patients with COVID-19 regardless of recent heparin exposure. Notably, PF4/H-reactive IgG antibodies correlated with those targeting the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike protein. Moreover, introducing exogenous RBD to or removing RBD-reactive IgG from COVID-19 plasma or IgG purified from COVID-19 plasma significantly reduced their ability to activate platelets. RBD-specific antibodies capable of platelet activation were cloned from peripheral blood B cells of patients with COVID-19. These antibodies possessed sequence motifs in the heavy-chain complementarity-determining region 3 (HCDR3), resembling those identified in pathogenic HIT antibodies. Furthermore, IgG+ B cells having these HCDR3 signatures were markedly expanded in patients with severe COVID-19. Importantly, platelet-activating antibodies present in patients with COVID-19 were associated with a specific elevation of platelet α-granule proteins in the plasma and showed a positive correlation with markers for inflammation and tissue damage, suggesting a functionality of these antibodies in patients. The demonstration of functional and structural similarities between certain RBD-specific antibodies in patients with COVID-19 and pathogenic antibodies typical of HIT suggests a novel mechanism by which RBD-specific antibodies might contribute to thrombosis in COVID-19.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest disclosure: A.P. reports stock ownership and officer position in Retham Technologies; stock ownership in Veralox Therapeutics; and holds patents with the Mayo Clinic, Retham Technologies, and Versiti, Inc. The remaining authors declare no competing financial interests.

Comment in

Similar articles

References

    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. - PubMed
    1. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021;18(3):194–209. - PMC - PubMed
    1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. - PMC - PubMed
    1. Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol. 2020;7(9):e671–e678. - PMC - PubMed
    1. Shah S, Shah K, Patel SB, et al. Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis. Cardiol Rev. 2020;28(6):295–302. - PMC - PubMed

MeSH terms