Biological characterization of AB-343, a novel and potent SARS-CoV-2 Mpro inhibitor with pan-coronavirus activity
- PMID: 39577571
- DOI: 10.1016/j.antiviral.2024.106038
Biological characterization of AB-343, a novel and potent SARS-CoV-2 Mpro inhibitor with pan-coronavirus activity
Abstract
Since the SARS-CoV-2 outbreak, there have been ongoing efforts to identify antiviral molecules with broad coronavirus activity to combat COVID-19. SARS-CoV-2's main protease (Mpro) is responsible for processing the viral polypeptide into non-structural proteins essential for replication. Here, we present the biological characterization of AB-343, a covalent small-molecule inhibitor of SARS-CoV-2 Mpro with potent activity in both cell-based (EC50 = 0.018 μM) and enzymatic (Ki = 0.0028 μM) assays. AB-343 also demonstrated excellent inhibition of Mpro of other human coronaviruses, including those from the alpha (229E and NL63) and beta (SARS-CoV, MERS, OC43, and HKU1) families, suggesting the compound could be active against future coronaviruses. No change in AB-343 potency was observed against Mpro of SARS-CoV-2 variants of concern, including Omicron, suggesting that AB-343 could be developed as a treatment against currently circulating coronaviruses. AB-343 also remained active against several Mpro variants which confer significant resistance to nirmatrelvir and ensitrelvir, which are presently the only Mpro inhibitors authorized for the treatment of COVID-19, further supporting the evaluation of AB-343 as a novel and potent therapeutic for COVID-19 and other coronaviruses.
Keywords: AB-343; COVID-19; Coronavirus; M(pro); Resistance; SARS-CoV-2; Variants.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Employees of Arbutus Biopharma may hold company stock. Other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous